Computational complexity of network vulnerability analysis

IF 0.3 Q4 COMPUTER SCIENCE, THEORY & METHODS
M. Berberler
{"title":"Computational complexity of network vulnerability analysis","authors":"M. Berberler","doi":"10.2478/ausi-2022-0012","DOIUrl":null,"url":null,"abstract":"Abstract Residual closeness is recently proposed as a vulnerability measure to characterize the stability of complex networks. Residual closeness is essential in the analysis of complex networks, but costly to compute. Currently, the fastest known algorithms run in polynomial time. Motivated by the fast-growing need to compute vulnerability measures on complex networks, new algorithms for computing node and edge residual closeness are introduced in this paper. Those proposed algorithms reduce the running times to Θ(n3) and Θ (n4) on unweighted networks, respectively, where n is the number of nodes.","PeriodicalId":41480,"journal":{"name":"Acta Universitatis Sapientiae Informatica","volume":"21 1","pages":"199 - 207"},"PeriodicalIF":0.3000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Sapientiae Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausi-2022-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Residual closeness is recently proposed as a vulnerability measure to characterize the stability of complex networks. Residual closeness is essential in the analysis of complex networks, but costly to compute. Currently, the fastest known algorithms run in polynomial time. Motivated by the fast-growing need to compute vulnerability measures on complex networks, new algorithms for computing node and edge residual closeness are introduced in this paper. Those proposed algorithms reduce the running times to Θ(n3) and Θ (n4) on unweighted networks, respectively, where n is the number of nodes.
网络漏洞分析的计算复杂度
残差接近度作为一种表征复杂网络稳定性的脆弱性度量近来被提出。残差接近度在复杂网络分析中是必不可少的,但计算成本很高。目前,已知最快的算法在多项式时间内运行。针对复杂网络中脆弱性度量计算需求的快速增长,本文提出了计算节点和边缘残差接近度的新算法。这些算法在未加权网络上的运行时间分别减少到Θ(n3)和Θ(n4),其中n为节点数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Universitatis Sapientiae Informatica
Acta Universitatis Sapientiae Informatica COMPUTER SCIENCE, THEORY & METHODS-
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信