{"title":"Air–sea fluxes and transfer velocity of CO2 over the North Sea: results from ASGAMAGE","authors":"C. Jacobs, W. Kohsiek, W. Oost","doi":"10.3402/TELLUSB.V51I3.16447","DOIUrl":null,"url":null,"abstract":"The paper presents an analysis, performed at the Royal Netherlands Meteorological Institute (KNMI), of data obtained at a research platform 9 km off the Dutch coast within the framework of the air–sea gas exchange program ASGAMAGE†. The air–sea transfer velocity of CO 2 was determined directly, that is, by observing CO 2 fluxes and air–sea concentration differences simultaneously. CO 2 fluxes were determined by means of the eddy correlation technique. Special care was taken to avoid the effects water vapour on the CO 2 flux measurements. The air and water near the air–sea interface were treated as well-mixed with respect to CO 2 . The combination of flux and concentration data allowed the computation of the transfer velocity for CO 2 without recourse to other gases. Results for two observation periods, one with downward CO 2 fluxes (May) and one with upward CO 2 fluxes (October), are consistent. A relation with U N ,10 , the wind speed adjusted to a height of 10 m and neutral stratification, was determined for the pooled data from the two experimental phases. The relation found was: k 660 = 0.54U N,10 2 cm h −1 , with k 660 the CO 2 transfer velocity normalized to salt water (35‰) at a temperature of 20 °C, and U N ,10 in m s −1 . The 95% confidence interval of the coefficient extends from 0.46 to 0.63. No relations with other geophysical parameters could be found from the present data set. DOI: 10.1034/j.1600-0889.1999.t01-2-00005.x","PeriodicalId":54432,"journal":{"name":"Tellus Series B-Chemical and Physical Meteorology","volume":"60 1","pages":"629-641"},"PeriodicalIF":2.3000,"publicationDate":"1999-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tellus Series B-Chemical and Physical Meteorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3402/TELLUSB.V51I3.16447","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 57
Abstract
The paper presents an analysis, performed at the Royal Netherlands Meteorological Institute (KNMI), of data obtained at a research platform 9 km off the Dutch coast within the framework of the air–sea gas exchange program ASGAMAGE†. The air–sea transfer velocity of CO 2 was determined directly, that is, by observing CO 2 fluxes and air–sea concentration differences simultaneously. CO 2 fluxes were determined by means of the eddy correlation technique. Special care was taken to avoid the effects water vapour on the CO 2 flux measurements. The air and water near the air–sea interface were treated as well-mixed with respect to CO 2 . The combination of flux and concentration data allowed the computation of the transfer velocity for CO 2 without recourse to other gases. Results for two observation periods, one with downward CO 2 fluxes (May) and one with upward CO 2 fluxes (October), are consistent. A relation with U N ,10 , the wind speed adjusted to a height of 10 m and neutral stratification, was determined for the pooled data from the two experimental phases. The relation found was: k 660 = 0.54U N,10 2 cm h −1 , with k 660 the CO 2 transfer velocity normalized to salt water (35‰) at a temperature of 20 °C, and U N ,10 in m s −1 . The 95% confidence interval of the coefficient extends from 0.46 to 0.63. No relations with other geophysical parameters could be found from the present data set. DOI: 10.1034/j.1600-0889.1999.t01-2-00005.x
期刊介绍:
Tellus B: Chemical and Physical Meteorology along with its sister journal Tellus A: Dynamic Meteorology and Oceanography, are the international, peer-reviewed journals of the International Meteorological Institute in Stockholm, an independent non-for-profit body integrated into the Department of Meteorology at the Faculty of Sciences of Stockholm University, Sweden. Aiming to promote the exchange of knowledge about meteorology from across a range of scientific sub-disciplines, the two journals serve an international community of researchers, policy makers, managers, media and the general public.