A discrete lattice plane analysis of the energy of coherent {0001}h.c.p. • {111}f.c.c., 〈1120〉h.c.p.• 〈110〉f.c.c. interfaces

R.V. Ramanujan , J.K. Lee , F.K. Le Goues , H.I. Aaronson
{"title":"A discrete lattice plane analysis of the energy of coherent {0001}h.c.p. • {111}f.c.c., 〈1120〉h.c.p.• 〈110〉f.c.c. interfaces","authors":"R.V. Ramanujan ,&nbsp;J.K. Lee ,&nbsp;F.K. Le Goues ,&nbsp;H.I. Aaronson","doi":"10.1016/0001-6160(89)90340-4","DOIUrl":null,"url":null,"abstract":"<div><p>A discrete lattice plane, regular solution, broken bond model, previously used to calculate the interfacial energy of f.c.c.:f.c.c. and b.c.c.:b.c.c. interphase boundaries, is extended to the situation in which there is a change in crystal structure across the interphase boundary, specifically to an interface between an f.c.c. and h.c.p. crystal. The particular interface studied, {0001}<sub>h.c.p.</sub> • {111}<sub>f.c.c.</sub>, 〈11<span><math><mtext>2</mtext></math></span>0〉<sub>h.c.p.</sub>• 〈1<span><math><mtext>1</mtext></math></span>0〉<sub>f.c.c.</sub> was made fully coherent by choosing the appropriate lattice parameter ratio. Both f.c.c. and h.c.p. phases are taken to be regular solutions. Minimization of the grand potential yields a set of non-linear equations in the equilibrium composition of the planes in the interface region whose solute concentration differs from that of the bulk composition in either phase. These values of the compositions are then used to compute the interfacial free energy of the boundary. The variations in the concentration profile and interfacial free energy with temperature and regular solution constants were investigated. The concentration profile was found to be diffuse and also asymmetric. The diffuseness does not vary in any simple manner with temperature. The interfacial energy decreases with increasing temperature in the various situations considered.</p></div>","PeriodicalId":6969,"journal":{"name":"Acta Metallurgica","volume":"37 11","pages":"Pages 3051-3059"},"PeriodicalIF":0.0000,"publicationDate":"1989-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0001-6160(89)90340-4","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Metallurgica","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0001616089903404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

A discrete lattice plane, regular solution, broken bond model, previously used to calculate the interfacial energy of f.c.c.:f.c.c. and b.c.c.:b.c.c. interphase boundaries, is extended to the situation in which there is a change in crystal structure across the interphase boundary, specifically to an interface between an f.c.c. and h.c.p. crystal. The particular interface studied, {0001}h.c.p. • {111}f.c.c., 〈1120〉h.c.p.• 〈110〉f.c.c. was made fully coherent by choosing the appropriate lattice parameter ratio. Both f.c.c. and h.c.p. phases are taken to be regular solutions. Minimization of the grand potential yields a set of non-linear equations in the equilibrium composition of the planes in the interface region whose solute concentration differs from that of the bulk composition in either phase. These values of the compositions are then used to compute the interfacial free energy of the boundary. The variations in the concentration profile and interfacial free energy with temperature and regular solution constants were investigated. The concentration profile was found to be diffuse and also asymmetric. The diffuseness does not vary in any simple manner with temperature. The interfacial energy decreases with increasing temperature in the various situations considered.

相干{0001}hcp能量的离散点阵面分析。•{111}f.c.c。, < 1120 > hp。•< 110 > fcc。接口
一种离散晶格平面,规则解,断键模型,以前用于计算氟化碳的界面能。和b.c.c: b.c.c。间相边界扩展到晶体结构在跨间相边界发生变化的情况,特别是fcc和hcp晶体之间的界面。所研究的特定界面,{0001}h.c.p。•{111}f.c.c。, < 1120 > hp。•< 110 > fcc。通过选择合适的晶格参数比使其完全相干。fcc阶段和hp阶段都被认为是常规的解决方案。大势的最小化产生了界面区域平面平衡组成的一组非线性方程,其溶质浓度与任一相的体组成不同。然后用这些组成的值来计算边界的界面自由能。研究了浓度分布和界面自由能随温度和规则溶液常数的变化规律。浓度分布是弥漫性的,也是不对称的。扩散不以任何简单的方式随温度变化。在考虑的各种情况下,界面能随温度的升高而降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信