{"title":"MuFBDTester: A mutation‐based test sequence generator for FBD programs implementing nuclear power plant software","authors":"Lingjun Liu, Eunkyoung Jee, Doo-Hwan Bae","doi":"10.1002/stvr.1815","DOIUrl":null,"url":null,"abstract":"Function block diagram (FBD) is a standard programming language for programmable logic controllers (PLCs). PLCs have been widely used to develop safety‐critical systems such as nuclear reactor protection systems. It is crucial to test FBD programs for such systems effectively. This paper presents an automated test sequence generation approach using mutation testing techniques for FBD programs and the developed tool, MuFBDTester. Given an FBD program, MuFBDTester analyses the program and generates mutated programs based on mutation operators. MuFBDTester translates the given program and mutants into the input language of a satisfiability modulo theories (SMT) solver to derive a set of test sequences. The primary objective is to find the test data that can distinguish between the results of the given program and mutants. We conducted experiments with several examples including real industrial cases to evaluate the effectiveness and efficiency of our approach. With the control of test size, the results indicated that the mutation‐based test suites were statistically more effective at revealing artificial faults than structural coverage‐based test suites. Furthermore, the mutation‐based test suites detected more reproduced faults, found in industrial programs, than structural coverage‐based test suites. Compared to structural coverage‐based test generation time, the time required by MuFBDTester to generate one test sequence from industrial programs is approximately 1.3 times longer; however, it is considered to be worth paying the price for high effectiveness. Using MuFBDTester, the manual effort of creating test suites was significantly reduced from days to minutes due to automated test generation. MuFBDTester can provide highly effective test suites for FBD engineers.","PeriodicalId":49506,"journal":{"name":"Software Testing Verification & Reliability","volume":"89 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Testing Verification & Reliability","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/stvr.1815","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 3
Abstract
Function block diagram (FBD) is a standard programming language for programmable logic controllers (PLCs). PLCs have been widely used to develop safety‐critical systems such as nuclear reactor protection systems. It is crucial to test FBD programs for such systems effectively. This paper presents an automated test sequence generation approach using mutation testing techniques for FBD programs and the developed tool, MuFBDTester. Given an FBD program, MuFBDTester analyses the program and generates mutated programs based on mutation operators. MuFBDTester translates the given program and mutants into the input language of a satisfiability modulo theories (SMT) solver to derive a set of test sequences. The primary objective is to find the test data that can distinguish between the results of the given program and mutants. We conducted experiments with several examples including real industrial cases to evaluate the effectiveness and efficiency of our approach. With the control of test size, the results indicated that the mutation‐based test suites were statistically more effective at revealing artificial faults than structural coverage‐based test suites. Furthermore, the mutation‐based test suites detected more reproduced faults, found in industrial programs, than structural coverage‐based test suites. Compared to structural coverage‐based test generation time, the time required by MuFBDTester to generate one test sequence from industrial programs is approximately 1.3 times longer; however, it is considered to be worth paying the price for high effectiveness. Using MuFBDTester, the manual effort of creating test suites was significantly reduced from days to minutes due to automated test generation. MuFBDTester can provide highly effective test suites for FBD engineers.
期刊介绍:
The journal is the premier outlet for research results on the subjects of testing, verification and reliability. Readers will find useful research on issues pertaining to building better software and evaluating it.
The journal is unique in its emphasis on theoretical foundations and applications to real-world software development. The balance of theory, empirical work, and practical applications provide readers with better techniques for testing, verifying and improving the reliability of software.
The journal targets researchers, practitioners, educators and students that have a vested interest in results generated by high-quality testing, verification and reliability modeling and evaluation of software. Topics of special interest include, but are not limited to:
-New criteria for software testing and verification
-Application of existing software testing and verification techniques to new types of software, including web applications, web services, embedded software, aspect-oriented software, and software architectures
-Model based testing
-Formal verification techniques such as model-checking
-Comparison of testing and verification techniques
-Measurement of and metrics for testing, verification and reliability
-Industrial experience with cutting edge techniques
-Descriptions and evaluations of commercial and open-source software testing tools
-Reliability modeling, measurement and application
-Testing and verification of software security
-Automated test data generation
-Process issues and methods
-Non-functional testing