Image restoration and reconstruction by non-convex total variation and shearlet regularizations

IF 1 4区 计算机科学 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Qiaohong Liu, C. Liu, Chen Ling, Liping Sun, Song Gao, Min Lin
{"title":"Image restoration and reconstruction by non-convex total variation and shearlet regularizations","authors":"Qiaohong Liu, C. Liu, Chen Ling, Liping Sun, Song Gao, Min Lin","doi":"10.1117/1.JEI.31.1.013028","DOIUrl":null,"url":null,"abstract":"Abstract. The total variation (TV) model preserves edges well but causes staircase effects and fails to protect textures. To avoid these limitations, an innovative hybrid regularization model that combines minmax-concave TV (and the shearlet sparsity is proposed for simultaneous image deblurring and image reconstruction. Although the proposed cost function is a non-convex L1-regularized optimization problem, it can maintain the convexity of the cost function by giving the proper nonconvexity parameter to minimize it. Then, an alternating iterative scheme using variable splitting and the alternating direction method of multipliers is introduced to optimize the proposed model. The extensive experiments demonstrate the efficiency and viability of the proposed method in terms of both subjective vision and objective measures.","PeriodicalId":54843,"journal":{"name":"Journal of Electronic Imaging","volume":"96 1","pages":"013028 - 013028"},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Imaging","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1117/1.JEI.31.1.013028","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. The total variation (TV) model preserves edges well but causes staircase effects and fails to protect textures. To avoid these limitations, an innovative hybrid regularization model that combines minmax-concave TV (and the shearlet sparsity is proposed for simultaneous image deblurring and image reconstruction. Although the proposed cost function is a non-convex L1-regularized optimization problem, it can maintain the convexity of the cost function by giving the proper nonconvexity parameter to minimize it. Then, an alternating iterative scheme using variable splitting and the alternating direction method of multipliers is introduced to optimize the proposed model. The extensive experiments demonstrate the efficiency and viability of the proposed method in terms of both subjective vision and objective measures.
基于非凸总变分和shearlet正则化的图像恢复与重建
摘要全变分(TV)模型能很好地保留边缘,但会产生阶梯效应,不能保护纹理。为了避免这些局限性,提出了一种结合最大凹电视和shearlet稀疏度的混合正则化模型,用于图像去模糊和图像重建。虽然所提出的代价函数是一个非凸l1正则化优化问题,但通过给出适当的非凸参数使其最小化,可以保持代价函数的凸性。然后,采用变量分裂和乘法器交替方向法的交替迭代方案对模型进行优化。大量的实验证明了该方法在主观视觉和客观测量方面的有效性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Electronic Imaging
Journal of Electronic Imaging 工程技术-成像科学与照相技术
CiteScore
1.70
自引率
27.30%
发文量
341
审稿时长
4.0 months
期刊介绍: The Journal of Electronic Imaging publishes peer-reviewed papers in all technology areas that make up the field of electronic imaging and are normally considered in the design, engineering, and applications of electronic imaging systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信