Rules of definitional reflection

P. Schroeder-Heister
{"title":"Rules of definitional reflection","authors":"P. Schroeder-Heister","doi":"10.1109/LICS.1993.287585","DOIUrl":null,"url":null,"abstract":"The author discusses two rules of definitional reflection: the logical version of definitional reflection, as used in the extended logic programming language GCLA, and the omega version of definitional reflection. The logical version is a left-introduction rule completely analogous to the left-introduction rules for logical operators in Gentzen-style sequent systems, whereas the omega version extends the logical version by a principle related to the omega rule in arithmetic. Correspondingly, the interpretation of free variables differs between the two approaches, resulting in different principles of closure of inference rules under substitution. This difference is crucial for the computational interpretation of definitional reflection.<<ETX>>","PeriodicalId":6322,"journal":{"name":"[1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science","volume":"4 1","pages":"222-232"},"PeriodicalIF":0.0000,"publicationDate":"1993-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"124","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.1993.287585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 124

Abstract

The author discusses two rules of definitional reflection: the logical version of definitional reflection, as used in the extended logic programming language GCLA, and the omega version of definitional reflection. The logical version is a left-introduction rule completely analogous to the left-introduction rules for logical operators in Gentzen-style sequent systems, whereas the omega version extends the logical version by a principle related to the omega rule in arithmetic. Correspondingly, the interpretation of free variables differs between the two approaches, resulting in different principles of closure of inference rules under substitution. This difference is crucial for the computational interpretation of definitional reflection.<>
定义反射规则
作者讨论了定义反射的两种规则:扩展逻辑编程语言GCLA中使用的定义反射的逻辑版本和定义反射的omega版本。逻辑版本是一个左引入规则,完全类似于根岑风格序列系统中逻辑算子的左引入规则,而omega版本通过与算术中的omega规则相关的原理扩展了逻辑版本。相应地,两种方法对自由变量的解释不同,导致替换下推理规则的闭包原则不同。这种差异对于定义反射的计算解释至关重要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信