Federated Linear Contextual Bandits with User-level Differential Privacy

Ruiquan Huang, Huanyu Zhang, Luca Melis, Milan Shen, Meisam Hajzinia, J. Yang
{"title":"Federated Linear Contextual Bandits with User-level Differential Privacy","authors":"Ruiquan Huang, Huanyu Zhang, Luca Melis, Milan Shen, Meisam Hajzinia, J. Yang","doi":"10.48550/arXiv.2306.05275","DOIUrl":null,"url":null,"abstract":"This paper studies federated linear contextual bandits under the notion of user-level differential privacy (DP). We first introduce a unified federated bandits framework that can accommodate various definitions of DP in the sequential decision-making setting. We then formally introduce user-level central DP (CDP) and local DP (LDP) in the federated bandits framework, and investigate the fundamental trade-offs between the learning regrets and the corresponding DP guarantees in a federated linear contextual bandits model. For CDP, we propose a federated algorithm termed as $\\texttt{ROBIN}$ and show that it is near-optimal in terms of the number of clients $M$ and the privacy budget $\\varepsilon$ by deriving nearly-matching upper and lower regret bounds when user-level DP is satisfied. For LDP, we obtain several lower bounds, indicating that learning under user-level $(\\varepsilon,\\delta)$-LDP must suffer a regret blow-up factor at least $\\min\\{1/\\varepsilon,M\\}$ or $\\min\\{1/\\sqrt{\\varepsilon},\\sqrt{M}\\}$ under different conditions.","PeriodicalId":74529,"journal":{"name":"Proceedings of the ... International Conference on Machine Learning. International Conference on Machine Learning","volume":"89 1","pages":"14060-14095"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... International Conference on Machine Learning. International Conference on Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2306.05275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper studies federated linear contextual bandits under the notion of user-level differential privacy (DP). We first introduce a unified federated bandits framework that can accommodate various definitions of DP in the sequential decision-making setting. We then formally introduce user-level central DP (CDP) and local DP (LDP) in the federated bandits framework, and investigate the fundamental trade-offs between the learning regrets and the corresponding DP guarantees in a federated linear contextual bandits model. For CDP, we propose a federated algorithm termed as $\texttt{ROBIN}$ and show that it is near-optimal in terms of the number of clients $M$ and the privacy budget $\varepsilon$ by deriving nearly-matching upper and lower regret bounds when user-level DP is satisfied. For LDP, we obtain several lower bounds, indicating that learning under user-level $(\varepsilon,\delta)$-LDP must suffer a regret blow-up factor at least $\min\{1/\varepsilon,M\}$ or $\min\{1/\sqrt{\varepsilon},\sqrt{M}\}$ under different conditions.
具有用户级差分隐私的联邦线性上下文强盗
本文在用户级差分隐私(DP)的概念下研究了联邦线性上下文强盗。我们首先引入了一个统一的联邦强盗框架,它可以适应顺序决策设置中DP的各种定义。然后,我们在联邦盗匪框架中正式引入了用户级中心DP (CDP)和本地DP (LDP),并研究了在联邦线性上下文盗匪模型中学习遗憾和相应DP保证之间的基本权衡。对于CDP,我们提出了一种称为$\texttt{ROBIN}$的联邦算法,并通过在满足用户级DP时推导出几乎匹配的上后悔界和下后悔界,表明它在客户端数量$M$和隐私预算$\varepsilon$方面是接近最优的。对于LDP,我们得到了几个下界,表明在不同条件下,在用户级$(\varepsilon,\delta)$ -LDP下的学习必须至少有一个后悔膨胀因子$\min\{1/\varepsilon,M\}$或$\min\{1/\sqrt{\varepsilon},\sqrt{M}\}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信