A class of fractional Ornstein–Uhlenbeck processes mixed with a Gamma distribution

IF 0.7 Q3 STATISTICS & PROBABILITY
L. Bianchi, S. Bonaccorsi, L. Tubaro
{"title":"A class of fractional Ornstein–Uhlenbeck processes mixed with a Gamma distribution","authors":"L. Bianchi, S. Bonaccorsi, L. Tubaro","doi":"10.15559/22-VMSTA216","DOIUrl":null,"url":null,"abstract":"We consider a sequence of fractional Ornstein–Uhlenbeck processes, that are defined as solutions of a family of stochastic Volterra equations with a kernel given by the Riesz derivative kernel, and leading coefficients given by a sequence of independent Gamma random variables. We construct a new process by taking the empirical mean of this sequence. In our framework, the processes involved are not Markovian, hence the analysis of their asymptotic behaviour requires some ad hoc construction. In our main result, we prove the almost sure convergence in the space of trajectories of the empirical means to a given Gaussian process, which we characterize completely.","PeriodicalId":42685,"journal":{"name":"Modern Stochastics-Theory and Applications","volume":"103 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Stochastics-Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15559/22-VMSTA216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a sequence of fractional Ornstein–Uhlenbeck processes, that are defined as solutions of a family of stochastic Volterra equations with a kernel given by the Riesz derivative kernel, and leading coefficients given by a sequence of independent Gamma random variables. We construct a new process by taking the empirical mean of this sequence. In our framework, the processes involved are not Markovian, hence the analysis of their asymptotic behaviour requires some ad hoc construction. In our main result, we prove the almost sure convergence in the space of trajectories of the empirical means to a given Gaussian process, which we characterize completely.
一类与Gamma分布混合的分数阶Ornstein-Uhlenbeck过程
我们考虑一个分数阶Ornstein-Uhlenbeck过程序列,它被定义为一类随机Volterra方程的解,其中核由Riesz导数核给出,导系数由独立的Gamma随机变量序列给出。我们通过取这个序列的经验均值来构造一个新的过程。在我们的框架中,所涉及的过程不是马尔可夫的,因此对其渐近行为的分析需要一些特别的构造。在我们的主要结果中,我们证明了经验均值在给定高斯过程的轨迹空间中几乎肯定的收敛性,并对其进行了完整的刻画。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Modern Stochastics-Theory and Applications
Modern Stochastics-Theory and Applications STATISTICS & PROBABILITY-
CiteScore
1.30
自引率
50.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信