{"title":"A Bivariate Index Vector to Measure Departure from Quasi-symmetry for Ordinal Square Contingency Tables","authors":"S. Ando","doi":"10.17713/ajs.v50i5.1206","DOIUrl":null,"url":null,"abstract":"This study proposes a bivariate index vector to concurrently analyze both the degree and direction of departure from the quasi-symmetry (QS) model for ordinal square contingency tables. The QS model and extended QS (EQS) models identify the symmetry and asymmetry between the probabilities of normal circulation and reverse circulation when the order exists for arbitrary three categories. The asymmetry parameter of the EQS model implies the degree of departure from the QS model; the EQS model is equivalent to the QS model when the asymmetry parameter equals to one. The structure of the EQS model differs depending on whether the asymmetry parameter approaches zero or infinity. Thus, the asymmetry parameter of the EQS model also implies the direction of departure from the QS model. The proposed bivariate index vector is constructed by combining existing and original sub-indexes that represent the degree of departure from the QS model and its direction. These sub-indexes are expressed as functions of the asymmetry parameter under the EQS model. We construct an estimator of the proposed bivariate index vector and an approximate confidence region for the proposed bivariate index vector. Using real data, we show that the proposed bivariate index vector is important to compare degrees of departure from the QS model for plural data sets.","PeriodicalId":51761,"journal":{"name":"Austrian Journal of Statistics","volume":"24 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Austrian Journal of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17713/ajs.v50i5.1206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2
Abstract
This study proposes a bivariate index vector to concurrently analyze both the degree and direction of departure from the quasi-symmetry (QS) model for ordinal square contingency tables. The QS model and extended QS (EQS) models identify the symmetry and asymmetry between the probabilities of normal circulation and reverse circulation when the order exists for arbitrary three categories. The asymmetry parameter of the EQS model implies the degree of departure from the QS model; the EQS model is equivalent to the QS model when the asymmetry parameter equals to one. The structure of the EQS model differs depending on whether the asymmetry parameter approaches zero or infinity. Thus, the asymmetry parameter of the EQS model also implies the direction of departure from the QS model. The proposed bivariate index vector is constructed by combining existing and original sub-indexes that represent the degree of departure from the QS model and its direction. These sub-indexes are expressed as functions of the asymmetry parameter under the EQS model. We construct an estimator of the proposed bivariate index vector and an approximate confidence region for the proposed bivariate index vector. Using real data, we show that the proposed bivariate index vector is important to compare degrees of departure from the QS model for plural data sets.
期刊介绍:
The Austrian Journal of Statistics is an open-access journal (without any fees) with a long history and is published approximately quarterly by the Austrian Statistical Society. Its general objective is to promote and extend the use of statistical methods in all kind of theoretical and applied disciplines. The Austrian Journal of Statistics is indexed in many data bases, such as Scopus (by Elsevier), Web of Science - ESCI by Clarivate Analytics (formely Thompson & Reuters), DOAJ, Scimago, and many more. The current estimated impact factor (via Publish or Perish) is 0.775, see HERE, or even more indices HERE. Austrian Journal of Statistics ISNN number is 1026597X Original papers and review articles in English will be published in the Austrian Journal of Statistics if judged consistently with these general aims. All papers will be refereed. Special topics sections will appear from time to time. Each section will have as a theme a specialized area of statistical application, theory, or methodology. Technical notes or problems for considerations under Shorter Communications are also invited. A special section is reserved for book reviews.