Hybrid PIC–fluid simulations for fast electron transport in a silicon target

IF 4.8 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
{"title":"Hybrid PIC–fluid simulations for fast electron transport in a silicon target","authors":"","doi":"10.1063/5.0137973","DOIUrl":null,"url":null,"abstract":"Ultra-intense laser-driven fast electron beam propagation in a silicon target is studied by three-dimensional hybrid particle-in-cell–fluid simulations. It is found that the transverse spatial profile of the fast electron beam has a significant influence on the propagation of the fast electrons. In the case of a steep spatial profile (e.g., a super-Gaussian profile), a tight fast electron beam is produced, and this excites more intense resistive magnetic fields, which pinch the electron beam strongly, leading to strong filamentation of the beam. By contrast, as the gradient of the spatial profile becomes more gentle (e.g., in the case of a Lorentzian profile), the resistive magnetic field and filamentation become weaker. This indicates that fast electron propagation in a solid target can be controlled by modulating the spatial gradient of the laser pulse edge.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"172 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter and Radiation at Extremes","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0137973","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ultra-intense laser-driven fast electron beam propagation in a silicon target is studied by three-dimensional hybrid particle-in-cell–fluid simulations. It is found that the transverse spatial profile of the fast electron beam has a significant influence on the propagation of the fast electrons. In the case of a steep spatial profile (e.g., a super-Gaussian profile), a tight fast electron beam is produced, and this excites more intense resistive magnetic fields, which pinch the electron beam strongly, leading to strong filamentation of the beam. By contrast, as the gradient of the spatial profile becomes more gentle (e.g., in the case of a Lorentzian profile), the resistive magnetic field and filamentation become weaker. This indicates that fast electron propagation in a solid target can be controlled by modulating the spatial gradient of the laser pulse edge.
硅靶中快速电子输运的混合pic -流体模拟
采用三维混合粒子-胞内流体模拟方法研究了超强激光驱动的快速电子束在硅靶中的传播。研究发现,快电子束的横向空间分布对快电子的传播有显著的影响。在陡峭的空间轮廓(例如,超高斯轮廓)的情况下,产生紧密的快速电子束,并激发更强的电阻磁场,这些磁场强烈地挤压电子束,导致电子束的强灯丝。相比之下,当空间剖面的梯度变得更平缓时(例如,在洛伦兹剖面的情况下),电阻磁场和细丝变得更弱。这表明可以通过调制激光脉冲边缘的空间梯度来控制电子在固体目标中的快速传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matter and Radiation at Extremes
Matter and Radiation at Extremes Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
8.60
自引率
9.80%
发文量
160
审稿时长
15 weeks
期刊介绍: Matter and Radiation at Extremes (MRE), is committed to the publication of original and impactful research and review papers that address extreme states of matter and radiation, and the associated science and technology that are employed to produce and diagnose these conditions in the laboratory. Drivers, targets and diagnostics are included along with related numerical simulation and computational methods. It aims to provide a peer-reviewed platform for the international physics community and promote worldwide dissemination of the latest and impactful research in related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信