{"title":"Ritz solution for buckling analysis of thin-walled composite channel beams based on a classical beam theory","authors":"N. N. Dương, N. Kien, N. T. Nhan","doi":"10.31814/stce.nuce2019-13(3)-04","DOIUrl":null,"url":null,"abstract":"Buckling analysis of thin-walled composite channel beams is presented in this paper. The displacement field is based on classical beam theory. Both plane stress and plane strain state are used to achieve constitutive equations. The governing equations are derived from Lagrange’s equations. Ritz method is applied to obtain the critical buckling loads of thin-walled beams. Numerical results are compared to those in available literature and investigate the effects of fiber angle, length-to-height’s ratio, boundary condition on the critical buckling loads of thin-walled channel beams. \nKeywords: \nRitz method; thin-walled composite beams; buckling.","PeriodicalId":17004,"journal":{"name":"Journal of Science and Technology in Civil Engineering (STCE) - NUCE","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science and Technology in Civil Engineering (STCE) - NUCE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31814/stce.nuce2019-13(3)-04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Buckling analysis of thin-walled composite channel beams is presented in this paper. The displacement field is based on classical beam theory. Both plane stress and plane strain state are used to achieve constitutive equations. The governing equations are derived from Lagrange’s equations. Ritz method is applied to obtain the critical buckling loads of thin-walled beams. Numerical results are compared to those in available literature and investigate the effects of fiber angle, length-to-height’s ratio, boundary condition on the critical buckling loads of thin-walled channel beams.
Keywords:
Ritz method; thin-walled composite beams; buckling.