Nutrient control for a viscous Cahn–Hilliard–Keller–Segel model with logistic source describing tumor growth

IF 1.3 4区 数学 Q2 MATHEMATICS, APPLIED
G. Gilardi, A. Signori, J. Sprekels
{"title":"Nutrient control for a viscous Cahn–Hilliard–Keller–Segel model with logistic source describing tumor growth","authors":"G. Gilardi, A. Signori, J. Sprekels","doi":"10.3934/dcdss.2023123","DOIUrl":null,"url":null,"abstract":"In this paper, we address a distributed control problem for a system of partial differential equations describing the evolution of a tumor that takes the biological mechanism of chemotaxis into account. The system describing the evolution is obtained as a nontrivial combination of a Cahn-Hilliard type system accounting for the segregation between tumor cells and healthy cells, with a Keller-Segel type equation accounting for the evolution of a nutrient species and modeling the chemotaxis phenomenon. First, we develop a robust mathematical background that allows us to analyze an associated optimal control problem. This analysis forced us to select a source term of logistic type in the nutrient equation and to restrict the analysis to the case of two space dimensions. Then, the existence of an optimal control and first-order necessary conditions for optimality are established.","PeriodicalId":48838,"journal":{"name":"Discrete and Continuous Dynamical Systems-Series S","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Continuous Dynamical Systems-Series S","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/dcdss.2023123","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we address a distributed control problem for a system of partial differential equations describing the evolution of a tumor that takes the biological mechanism of chemotaxis into account. The system describing the evolution is obtained as a nontrivial combination of a Cahn-Hilliard type system accounting for the segregation between tumor cells and healthy cells, with a Keller-Segel type equation accounting for the evolution of a nutrient species and modeling the chemotaxis phenomenon. First, we develop a robust mathematical background that allows us to analyze an associated optimal control problem. This analysis forced us to select a source term of logistic type in the nutrient equation and to restrict the analysis to the case of two space dimensions. Then, the existence of an optimal control and first-order necessary conditions for optimality are established.
描述肿瘤生长的logistic源粘性Cahn-Hilliard-Keller-Segel模型的营养控制
在本文中,我们解决了一个描述肿瘤进化的偏微分方程系统的分布式控制问题,该系统考虑了趋化性的生物学机制。描述进化的系统是由Cahn-Hilliard型系统(用于解释肿瘤细胞和健康细胞之间的分离)和Keller-Segel型方程(用于解释营养物质的进化并模拟趋化现象)组成的一个重要组合。首先,我们开发了一个强大的数学背景,使我们能够分析相关的最优控制问题。这种分析迫使我们在营养方程中选择一个逻辑型源项,并将分析限制在两个空间维度的情况下。然后,建立了最优控制的存在性和最优性的一阶必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
5.60%
发文量
177
期刊介绍: Series S of Discrete and Continuous Dynamical Systems only publishes theme issues. Each issue is devoted to a specific area of the mathematical, physical and engineering sciences. This area will define a research frontier that is advancing rapidly, often bridging mathematics and sciences. DCDS-S is essential reading for mathematicians, physicists, engineers and other physical scientists. The journal is published bimonthly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信