Cyclic branched covers of alternating knots

L. Paoluzzi
{"title":"Cyclic branched covers of alternating knots","authors":"L. Paoluzzi","doi":"10.5802/AHL.89","DOIUrl":null,"url":null,"abstract":"For any integer n > 2, the n-fold cyclic branched cover M of an alternating prime knot K in the 3-sphere determines K, meaning that if K is a knot in the 3-sphere that is not equivalent to K then its n-fold cyclic branched cover cannot be homeomorphic to M.","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"189 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/AHL.89","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

For any integer n > 2, the n-fold cyclic branched cover M of an alternating prime knot K in the 3-sphere determines K, meaning that if K is a knot in the 3-sphere that is not equivalent to K then its n-fold cyclic branched cover cannot be homeomorphic to M.
交替结的环状分枝盖
对于任意整数n > 2, 3球上的交替素数结K的n次循环分支覆盖M决定了K,这意味着如果K是不等于K的3球上的一个结,那么它的n次循环分支覆盖不可能与M同胚。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信