Vector Flow Velocity Estimation from Beamsummed Data Using Deep Neural Networks

Y. Li, D. Hyun, J. Dahl
{"title":"Vector Flow Velocity Estimation from Beamsummed Data Using Deep Neural Networks","authors":"Y. Li, D. Hyun, J. Dahl","doi":"10.1109/ULTSYM.2019.8925825","DOIUrl":null,"url":null,"abstract":"Vector flow imaging (VFI) is a novel velocity measurement technique that provides flow velocity information in both azimuth and axial dimensions. Compared to conventional color Doppler imaging, VFI provides velocity estimation that is independent of flow directions. Previous VFI techniques utilize either multiple transmit or receive beams or angles, or speckle tracking. This creates a trade-off between computational intensity and estimate quality or equipment cost. In this work, we present a vector flow velocity estimation technique based on deep neural networks using only beamsummed radio-frequency (RF) data. The deep neural network extracts features from the RF data, and performs flow velocity estimation on the features, and maps the estimates back to the spatial domain. The structure and training of the neural network model is presented. The performance of the technique is demonstrated and evaluated using simulations and flow phantom experiments.","PeriodicalId":6759,"journal":{"name":"2019 IEEE International Ultrasonics Symposium (IUS)","volume":"57 1","pages":"860-863"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Ultrasonics Symposium (IUS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.2019.8925825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Vector flow imaging (VFI) is a novel velocity measurement technique that provides flow velocity information in both azimuth and axial dimensions. Compared to conventional color Doppler imaging, VFI provides velocity estimation that is independent of flow directions. Previous VFI techniques utilize either multiple transmit or receive beams or angles, or speckle tracking. This creates a trade-off between computational intensity and estimate quality or equipment cost. In this work, we present a vector flow velocity estimation technique based on deep neural networks using only beamsummed radio-frequency (RF) data. The deep neural network extracts features from the RF data, and performs flow velocity estimation on the features, and maps the estimates back to the spatial domain. The structure and training of the neural network model is presented. The performance of the technique is demonstrated and evaluated using simulations and flow phantom experiments.
基于深度神经网络的波束和数据矢量流速估计
矢量流成像(VFI)是一种新型的速度测量技术,可以同时提供方位和轴向的流速信息。与传统的彩色多普勒成像相比,VFI提供了独立于流动方向的速度估计。以前的VFI技术利用多个发射或接收光束或角度,或斑点跟踪。这在计算强度和估计质量或设备成本之间产生了权衡。在这项工作中,我们提出了一种基于深度神经网络的矢量流速估计技术,该技术仅使用波束和射频(RF)数据。深度神经网络从射频数据中提取特征,对特征进行流速估计,并将估计映射回空间域。给出了神经网络模型的结构和训练方法。通过仿真和流动模拟实验对该技术的性能进行了验证和评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信