Development of an Inspection Software towards Detection and Location of Cracks and Foreign Objects in Boiler header or Pipes

Samarpita Hatua, D. Ray, Sahadeb Shit, D. Das, Sayanti Hazra
{"title":"Development of an Inspection Software towards Detection and Location of Cracks and Foreign Objects in Boiler header or Pipes","authors":"Samarpita Hatua, D. Ray, Sahadeb Shit, D. Das, Sayanti Hazra","doi":"10.1109/AISP53593.2022.9760604","DOIUrl":null,"url":null,"abstract":"Industry 4.0 offers a radical transformation to increase cost-effective, flexible, and efficient production of higher-quality fully automated systems by collecting and analyzing data across machines. From the last few decades, power industry has started to focus on real-time systems instead of using static methodology in periodical boiler inspection. The power plant undergoes sudden break down due to cracks and foreign bodies causing huge economic loss to the plant as well as the country. To avoid such unforeseen breakdown, most of the power plants has adopted inspection and monitoring system as a regular solution. Visual inspection is one of the most popular techniques for such inspections using a tiny camera with high-power LEDs (Known as Borescope). But it has several limitations for circumferential (360°) and longitudinal (2000mm) coverage and also equidistance inspection from the center of the header is not possible using a conventional Borescope. A specific Digital Video Recorder (DVR) used for the inspection and monitoring is not sufficient to resolve multipurpose requirements such as position of the foreign body and crack, feature of magnification, and more important is data log including plant information and crack details with images. A real-time inspection module has been developed integrated with robotic (AI) based on computer vision to make the inspection dynamic and fully automated.","PeriodicalId":6793,"journal":{"name":"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)","volume":"33 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AISP53593.2022.9760604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Industry 4.0 offers a radical transformation to increase cost-effective, flexible, and efficient production of higher-quality fully automated systems by collecting and analyzing data across machines. From the last few decades, power industry has started to focus on real-time systems instead of using static methodology in periodical boiler inspection. The power plant undergoes sudden break down due to cracks and foreign bodies causing huge economic loss to the plant as well as the country. To avoid such unforeseen breakdown, most of the power plants has adopted inspection and monitoring system as a regular solution. Visual inspection is one of the most popular techniques for such inspections using a tiny camera with high-power LEDs (Known as Borescope). But it has several limitations for circumferential (360°) and longitudinal (2000mm) coverage and also equidistance inspection from the center of the header is not possible using a conventional Borescope. A specific Digital Video Recorder (DVR) used for the inspection and monitoring is not sufficient to resolve multipurpose requirements such as position of the foreign body and crack, feature of magnification, and more important is data log including plant information and crack details with images. A real-time inspection module has been developed integrated with robotic (AI) based on computer vision to make the inspection dynamic and fully automated.
锅炉集箱或管道中裂纹和异物检测与定位软件的开发
工业4.0提供了一种彻底的转变,通过收集和分析机器间的数据,提高高质量全自动系统的成本效益、灵活性和效率。从过去的几十年开始,电力工业开始关注实时系统,而不是使用静态方法进行锅炉定期检查。电厂因裂缝和异物突然瘫痪,给电厂和国家造成巨大的经济损失。为了避免这种不可预见的故障,大多数电厂都采用了检查和监测系统作为常规解决方案。目视检查是此类检查中最流行的技术之一,使用带有大功率led的微型相机(称为Borescope)。但它在周向(360°)和纵向(2000mm)覆盖范围方面有一些限制,而且使用传统的内窥镜无法从集管中心进行等距检查。一台专门用于检测和监控的数字录像机(DVR)是不足以解决诸如异物和裂缝的位置、放大特性等多用途需求的,更重要的是包含工厂信息和裂缝细节的数据记录和图像。开发了基于计算机视觉的与机器人(AI)集成的实时检测模块,实现了检测的动态和全自动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信