Clinton T. White, Neil P. Molino, Julia S. Yang, John M. Conroy
{"title":"occams: A Text Summarization Package","authors":"Clinton T. White, Neil P. Molino, Julia S. Yang, John M. Conroy","doi":"10.3390/analytics2030030","DOIUrl":null,"url":null,"abstract":"Extractive text summarization selects asmall subset of sentences from a document, which gives good “coverage” of a document. When given a set of term weights indicating the importance of the terms, the concept of coverage may be formalized into a combinatorial optimization problem known as the budgeted maximum coverage problem. Extractive methods in this class are known to beamong the best of classic extractive summarization systems. This paper gives a synopsis of thesoftware package occams, which is a multilingual extractive single and multi-document summarization package based on an algorithm giving an optimal approximation to the budgeted maximum coverage problem. The occams package is written in Python and provides an easy-to-use modular interface, allowing it to work in conjunction with popular Python NLP packages, such as nltk, stanza or spacy.","PeriodicalId":93078,"journal":{"name":"Big data analytics","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big data analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/analytics2030030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Extractive text summarization selects asmall subset of sentences from a document, which gives good “coverage” of a document. When given a set of term weights indicating the importance of the terms, the concept of coverage may be formalized into a combinatorial optimization problem known as the budgeted maximum coverage problem. Extractive methods in this class are known to beamong the best of classic extractive summarization systems. This paper gives a synopsis of thesoftware package occams, which is a multilingual extractive single and multi-document summarization package based on an algorithm giving an optimal approximation to the budgeted maximum coverage problem. The occams package is written in Python and provides an easy-to-use modular interface, allowing it to work in conjunction with popular Python NLP packages, such as nltk, stanza or spacy.