{"title":"Investigating resilient high performance reconfigurable computing with minimally-invasive system monitoring","authors":"Bin Huang, A. Schmidt, Ashwin A. Mendon, R. Sass","doi":"10.1109/HPRCTA.2010.5670795","DOIUrl":null,"url":null,"abstract":"As researchers push for Exascale computing, one of the emerging challenges is system resilience. Unlike fault-tolerance which corrects errors, recent reports suggest that resilient systems will need to continue to make progress on an application despite faults. A first step in developing a resilient system is to have robust, scalable system monitoring. The work described here presents a novel, minimally-invasive system monitor that operates over a separate network. We analytically characterize the performance for an arbitrary set of nodes and demonstrate a working implementation of the design. We argue that the hardware approach is inherently superior to the ad hoc, software techniques currently employed in practice.","PeriodicalId":59014,"journal":{"name":"高性能计算技术","volume":"102 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"高性能计算技术","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/HPRCTA.2010.5670795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
As researchers push for Exascale computing, one of the emerging challenges is system resilience. Unlike fault-tolerance which corrects errors, recent reports suggest that resilient systems will need to continue to make progress on an application despite faults. A first step in developing a resilient system is to have robust, scalable system monitoring. The work described here presents a novel, minimally-invasive system monitor that operates over a separate network. We analytically characterize the performance for an arbitrary set of nodes and demonstrate a working implementation of the design. We argue that the hardware approach is inherently superior to the ad hoc, software techniques currently employed in practice.