Mixed finite element method for a second order Dirichlet boundary control problem

Divay Garg, K. Porwal
{"title":"Mixed finite element method for a second order Dirichlet boundary control problem","authors":"Divay Garg, K. Porwal","doi":"10.48550/arXiv.2207.10139","DOIUrl":null,"url":null,"abstract":"The main aim of this article is to analyze mixed finite element method for the second order Dirichlet boundary control problem. Therein, we develop both a priori and a posteriori error analysis using the energy space based approach. We obtain optimal order a priori error estimates in the energy norm and $L^2$-norm with the help of auxiliary problems. The reliability and the efficiency of proposed a posteriori error estimator is discussed using the Helmholtz decomposition. Numerical experiments are presented to confirm the theoretical findings.","PeriodicalId":10572,"journal":{"name":"Comput. Math. Appl.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Math. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2207.10139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The main aim of this article is to analyze mixed finite element method for the second order Dirichlet boundary control problem. Therein, we develop both a priori and a posteriori error analysis using the energy space based approach. We obtain optimal order a priori error estimates in the energy norm and $L^2$-norm with the help of auxiliary problems. The reliability and the efficiency of proposed a posteriori error estimator is discussed using the Helmholtz decomposition. Numerical experiments are presented to confirm the theoretical findings.
二阶Dirichlet边界控制问题的混合有限元法
本文的主要目的是分析二阶Dirichlet边界控制问题的混合有限元方法。其中,我们使用基于能量空间的方法开发了先验和后验误差分析。在辅助问题的帮助下,得到了能量范数和L^2 -范数的最优先验阶误差估计。利用亥姆霍兹分解讨论了后验误差估计器的可靠性和效率。数值实验验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信