{"title":"Mixed finite element method for a second order Dirichlet boundary control problem","authors":"Divay Garg, K. Porwal","doi":"10.48550/arXiv.2207.10139","DOIUrl":null,"url":null,"abstract":"The main aim of this article is to analyze mixed finite element method for the second order Dirichlet boundary control problem. Therein, we develop both a priori and a posteriori error analysis using the energy space based approach. We obtain optimal order a priori error estimates in the energy norm and $L^2$-norm with the help of auxiliary problems. The reliability and the efficiency of proposed a posteriori error estimator is discussed using the Helmholtz decomposition. Numerical experiments are presented to confirm the theoretical findings.","PeriodicalId":10572,"journal":{"name":"Comput. Math. Appl.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Math. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2207.10139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The main aim of this article is to analyze mixed finite element method for the second order Dirichlet boundary control problem. Therein, we develop both a priori and a posteriori error analysis using the energy space based approach. We obtain optimal order a priori error estimates in the energy norm and $L^2$-norm with the help of auxiliary problems. The reliability and the efficiency of proposed a posteriori error estimator is discussed using the Helmholtz decomposition. Numerical experiments are presented to confirm the theoretical findings.