BloomXNOR-Net: privacy-preserving machine learning in IoT

Zakia Zaman, Wanli Xue, Praveen Gauravaram, Wen Hu, Sanjay Jha
{"title":"BloomXNOR-Net: privacy-preserving machine learning in IoT","authors":"Zakia Zaman, Wanli Xue, Praveen Gauravaram, Wen Hu, Sanjay Jha","doi":"10.1145/3556563.3558534","DOIUrl":null,"url":null,"abstract":"In recent years, the Internet of Things (IoT) has become a dominant data generation framework for establishing a higher level of system intelligence. At the same time, to avail the full advantage of this domain, the adopters of IoT are also keen on applying Machine Learning (ML) algorithms to these datasets to reveal new business insights. However, these datasets contain sensitive information that demands careful processing to prevent privacy breaches. Many existing privacy-preserving ML (PPML) algorithms are unsuitable for these resource-constrained devices. We propose a novel PPML technique that can be executed on IoT devices using the Bloom Filter encoded IoT dataset in XNOR-Net architecture. The preliminary experimental result using the MNIST dataset shows satisfactory performance.","PeriodicalId":62224,"journal":{"name":"世界中学生文摘","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"世界中学生文摘","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1145/3556563.3558534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, the Internet of Things (IoT) has become a dominant data generation framework for establishing a higher level of system intelligence. At the same time, to avail the full advantage of this domain, the adopters of IoT are also keen on applying Machine Learning (ML) algorithms to these datasets to reveal new business insights. However, these datasets contain sensitive information that demands careful processing to prevent privacy breaches. Many existing privacy-preserving ML (PPML) algorithms are unsuitable for these resource-constrained devices. We propose a novel PPML technique that can be executed on IoT devices using the Bloom Filter encoded IoT dataset in XNOR-Net architecture. The preliminary experimental result using the MNIST dataset shows satisfactory performance.
BloomXNOR-Net:物联网中的隐私保护机器学习
近年来,物联网(IoT)已成为建立更高水平系统智能的主要数据生成框架。与此同时,为了充分利用这一领域的优势,物联网的采用者也热衷于将机器学习(ML)算法应用于这些数据集,以揭示新的业务见解。然而,这些数据集包含敏感信息,需要仔细处理以防止隐私泄露。许多现有的隐私保护ML (PPML)算法不适合这些资源受限的设备。我们提出了一种新的PPML技术,该技术可以在XNOR-Net架构中使用Bloom Filter编码的物联网数据集在物联网设备上执行。使用MNIST数据集的初步实验结果显示了令人满意的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
4051
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信