Negative‐Index Acoustic Metamaterial Operating above 100 kHz in Water Using Microstructured Silicon Chips as Unit Cells

Jiaying Wang, F. Allein, Cécile Floer, N. Boechler, James Friend, O. Vázquez-Mena
{"title":"Negative‐Index Acoustic Metamaterial Operating above 100 kHz in Water Using Microstructured Silicon Chips as Unit Cells","authors":"Jiaying Wang, F. Allein, Cécile Floer, N. Boechler, James Friend, O. Vázquez-Mena","doi":"10.1002/admt.202200407","DOIUrl":null,"url":null,"abstract":"A major challenge for negative‐index acoustic metamaterials is increasing their operational frequency to the MHz range in water for applications such as biomedical ultrasound. Herein, a novel technology to realize acoustic metamaterials in water using microstructured silicon chips as unit cells that incorporate silicon nitride membranes and Helmholtz resonators with dimensions below 100 μm fabricated using clean‐room microfabrication technology is presented. The silicon chip unit‐cells are then assembled to form periodic structures that result in a negative‐index metamaterial. Finite‐element method (FEM) simulations of the metamaterial show a negative‐index branch in the dispersion relation in the 0.25–0.35 MHz range. The metamaterial is characterized experimentally using laser‐doppler vibrometry, showing opposite phase and group velocities, a signature of negative‐index materials, and is in close agreement with FEM simulations. The experimental measurements also show that the magnitude of phase and group velocities increase as the frequency increases within the negative‐index band, confirming the negative‐index behavior of the material. Acoustic indices from –1 to –5 are reached with respect to water in the 0.25–0.35 MHz range. The use of silicon technology microfabrication to produce acoustic metamaterials for operation in water opens a new road to reach frequencies relevant for biomedical ultrasound applications.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials & Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/admt.202200407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A major challenge for negative‐index acoustic metamaterials is increasing their operational frequency to the MHz range in water for applications such as biomedical ultrasound. Herein, a novel technology to realize acoustic metamaterials in water using microstructured silicon chips as unit cells that incorporate silicon nitride membranes and Helmholtz resonators with dimensions below 100 μm fabricated using clean‐room microfabrication technology is presented. The silicon chip unit‐cells are then assembled to form periodic structures that result in a negative‐index metamaterial. Finite‐element method (FEM) simulations of the metamaterial show a negative‐index branch in the dispersion relation in the 0.25–0.35 MHz range. The metamaterial is characterized experimentally using laser‐doppler vibrometry, showing opposite phase and group velocities, a signature of negative‐index materials, and is in close agreement with FEM simulations. The experimental measurements also show that the magnitude of phase and group velocities increase as the frequency increases within the negative‐index band, confirming the negative‐index behavior of the material. Acoustic indices from –1 to –5 are reached with respect to water in the 0.25–0.35 MHz range. The use of silicon technology microfabrication to produce acoustic metamaterials for operation in water opens a new road to reach frequencies relevant for biomedical ultrasound applications.
使用微结构硅芯片作为单元电池,在水中工作在100 kHz以上的负折射率声学超材料
负折射率声学超材料面临的一个主要挑战是将其在水中的工作频率提高到MHz范围,用于生物医学超声等应用。本文提出了一种在水中实现声学超材料的新技术,该技术使用微结构硅片作为单元电池,采用洁净室微加工技术制造尺寸小于100 μm的氮化硅膜和亥姆霍兹谐振器。然后将硅芯片单元组装成周期性结构,从而形成负折射率超材料。有限元模拟表明,在0.25 ~ 0.35 MHz范围内,超材料的色散关系出现了一个负折射率分支。用激光多普勒振动仪对这种超材料进行了实验表征,显示出相反的相速度和群速度,这是负折射率材料的特征,与有限元模拟结果非常吻合。实验测量还表明,在负折射率范围内,随着频率的增加,相速度和群速度的大小也会增加,从而证实了材料的负折射率行为。在0.25-0.35 MHz范围内,声学指数为-1至-5。利用硅微加工技术生产在水中运行的声学超材料,为达到与生物医学超声应用相关的频率开辟了一条新的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信