Bereziskii-Kosterlitz-Thouless transition in the Weyl system PtBi2

A. Veyrat, V. Labracherie, R. Acharya, D. Bashlakov, F. Caglieris, J. I. Facio, G. Shipunov, L. Gráf, Johannes Schoop, Y. Naidyuk, R. Giraud, J. Brink, B. Buechner, C. Hess, S. Aswartham, J. Dufouleur
{"title":"Bereziskii-Kosterlitz-Thouless transition in the Weyl system PtBi2","authors":"A. Veyrat, V. Labracherie, R. Acharya, D. Bashlakov, F. Caglieris, J. I. Facio, G. Shipunov, L. Gráf, Johannes Schoop, Y. Naidyuk, R. Giraud, J. Brink, B. Buechner, C. Hess, S. Aswartham, J. Dufouleur","doi":"10.21203/RS.3.RS-184874/V1","DOIUrl":null,"url":null,"abstract":"\n Symmetry breaking in topological matter became, in the last decade, a key concept in condensed matter physics to unveil novel electronic states. In this work, we reveal that broken inversion symmetry and strong spin-orbit coupling in trigonal PtBi2 lead to a Weyl semimetal band structure, with unusually robust two-dimensional superconductivity in thin fims. Transport measurements show that high-quality PtBi2 crystals are three-dimensional superconductors (Tc≈600 mK) with an isotropic critical field (Bc≈50 mT). Remarkably, we evidence in a rather thick flake (60 nm), exfoliated from a macroscopic crystal, the two-dimensional nature of the superconducting state, with a critical temperature Tc≈370 mK and highly-anisotropic critical fields. Our results reveal a Berezinskii-Kosterlitz-Thouless transition with TBKT≈310 mK and with a broadening of Tc due to inhomogenities in the sample. Due to the very long superconducting coherence length ξ in PtBi2, the vortex-antivortex pairing mechanism can be studied in unusually-thick samples (at least five times thicker than for any other two-dimensional superconductor), making PtBi2 an ideal platform to study low dimensional superconductivity in a topological semimetal.","PeriodicalId":8514,"journal":{"name":"arXiv: Superconductivity","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Superconductivity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/RS.3.RS-184874/V1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Symmetry breaking in topological matter became, in the last decade, a key concept in condensed matter physics to unveil novel electronic states. In this work, we reveal that broken inversion symmetry and strong spin-orbit coupling in trigonal PtBi2 lead to a Weyl semimetal band structure, with unusually robust two-dimensional superconductivity in thin fims. Transport measurements show that high-quality PtBi2 crystals are three-dimensional superconductors (Tc≈600 mK) with an isotropic critical field (Bc≈50 mT). Remarkably, we evidence in a rather thick flake (60 nm), exfoliated from a macroscopic crystal, the two-dimensional nature of the superconducting state, with a critical temperature Tc≈370 mK and highly-anisotropic critical fields. Our results reveal a Berezinskii-Kosterlitz-Thouless transition with TBKT≈310 mK and with a broadening of Tc due to inhomogenities in the sample. Due to the very long superconducting coherence length ξ in PtBi2, the vortex-antivortex pairing mechanism can be studied in unusually-thick samples (at least five times thicker than for any other two-dimensional superconductor), making PtBi2 an ideal platform to study low dimensional superconductivity in a topological semimetal.
Weyl系统PtBi2的bereziski - kosterlitz - thouless跃迁
在过去的十年中,拓扑物质中的对称破缺成为凝聚态物理学中揭示新电子态的关键概念。在这项工作中,我们揭示了三角形PtBi2中反转对称性的破坏和强自旋轨道耦合导致Weyl半金属带结构,在薄膜中具有异常强健的二维超导性。输运测量表明,高质量的PtBi2晶体是具有各向同性临界场(Bc≈50 mT)的三维超导体(Tc≈600 mK)。值得注意的是,我们在宏观晶体剥离的相当厚的薄片(60 nm)中证明了超导态的二维性质,临界温度Tc≈370 mK和高度各向异性的临界场。我们的结果揭示了一个Berezinskii-Kosterlitz-Thouless转变,TBKT≈310 mK,由于样品中的不均匀性,Tc展宽。由于PtBi2的超导相干长度ξ非常长,因此可以在异常厚的样品(至少比任何其他二维超导体厚5倍)中研究涡-反涡配对机制,使PtBi2成为研究拓扑半金属中低维超导性的理想平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信