Structural Studies on Nonequilibrium Microstructures of Dioctyl Sodium Dodecyl Sulfosuccinate (Aerosol-OT) in p-Toluenesulfonic Acid and Phosphatidylcholine
{"title":"Structural Studies on Nonequilibrium Microstructures of Dioctyl Sodium Dodecyl Sulfosuccinate (Aerosol-OT) in p-Toluenesulfonic Acid and Phosphatidylcholine","authors":"M. Temgire, C. Manohar, J. Bellare, S. Joshi","doi":"10.1155/2012/798492","DOIUrl":null,"url":null,"abstract":"Several microstructures are evolved at the interface when sparingly soluble solid surfactants come in contact with water. One class of these microstructures is termed as “myelin figures”; these were observed when phosphatidylcholine came in contact with water. Although the myelins are initially simple rod-like, complex forms like helices, coils and so forth. appear in the later stage. Finally, the myelins fuse together to form a complex mosaic-like structure. When studied by taking a cross-section using cryoscanning electron microscopy, it revealed concentric circular pattern inside the myelin figures. The cross-sections of (dioctyl sodium dodecyl sulfosiccinate) AOT/water system myelin internal structures were lost. When p-toluenesulfonic acid (PTS) 2 wt% was present in the water phase, AOT myelins revealed the internal microstructures. It has annular concentric ring-like structure with a core axon at the centre. Further investigation revealed new microstructures for the first time having multiple axons in the single-myelin strand.","PeriodicalId":7371,"journal":{"name":"Advances in Physical Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physical Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/798492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Several microstructures are evolved at the interface when sparingly soluble solid surfactants come in contact with water. One class of these microstructures is termed as “myelin figures”; these were observed when phosphatidylcholine came in contact with water. Although the myelins are initially simple rod-like, complex forms like helices, coils and so forth. appear in the later stage. Finally, the myelins fuse together to form a complex mosaic-like structure. When studied by taking a cross-section using cryoscanning electron microscopy, it revealed concentric circular pattern inside the myelin figures. The cross-sections of (dioctyl sodium dodecyl sulfosiccinate) AOT/water system myelin internal structures were lost. When p-toluenesulfonic acid (PTS) 2 wt% was present in the water phase, AOT myelins revealed the internal microstructures. It has annular concentric ring-like structure with a core axon at the centre. Further investigation revealed new microstructures for the first time having multiple axons in the single-myelin strand.