An integrated Shannon Entropy and reference ideal method for the selection of enhanced oil recovery pilot areas based on an unsupervised machine learning algorithm
S. M. Motahhari, M. Rafizadeh, S. Pishvaie, M. Ahmadi
{"title":"An integrated Shannon Entropy and reference ideal method for the selection of enhanced oil recovery pilot areas based on an unsupervised machine learning algorithm","authors":"S. M. Motahhari, M. Rafizadeh, S. Pishvaie, M. Ahmadi","doi":"10.2516/ogst/2021061","DOIUrl":null,"url":null,"abstract":"Pilot-scale enhanced oil recovery in hydrocarbon field development is often implemented to reduce investment risk due to geological uncertainties. Selection of the pilot area is important, since the result will be extended to the full field. The main challenge in choosing a pilot region is the absence of a systematic and quantitative method. In this paper, we present a novel quantitative and systematic method composed of reservoir-geology and operational-economic criteria where a cluster analysis is utilized as an unsupervised machine learning method. A field of study will be subdivided into pilot candidate areas, and the optimized pilot size is calculated using the economic objective function. Subsequently, the corresponding Covariance (COV) matrix is computed for the simulated 3-D reservoir quality maps in the areas. The areas are optimally clustered to select the dominant cluster. The operational-economic criteria could be applied for decision making as well as the proximity of each area to the center of dominant cluster as a geological-reservoir criterion. Ultimately, the Shannon entropy weighting and the reference ideal method are applied to compute the pilot opportunity index in each area. The proposed method was employed for a pilot study on an oil field in south west Iran.","PeriodicalId":19424,"journal":{"name":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","volume":"212 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2516/ogst/2021061","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Pilot-scale enhanced oil recovery in hydrocarbon field development is often implemented to reduce investment risk due to geological uncertainties. Selection of the pilot area is important, since the result will be extended to the full field. The main challenge in choosing a pilot region is the absence of a systematic and quantitative method. In this paper, we present a novel quantitative and systematic method composed of reservoir-geology and operational-economic criteria where a cluster analysis is utilized as an unsupervised machine learning method. A field of study will be subdivided into pilot candidate areas, and the optimized pilot size is calculated using the economic objective function. Subsequently, the corresponding Covariance (COV) matrix is computed for the simulated 3-D reservoir quality maps in the areas. The areas are optimally clustered to select the dominant cluster. The operational-economic criteria could be applied for decision making as well as the proximity of each area to the center of dominant cluster as a geological-reservoir criterion. Ultimately, the Shannon entropy weighting and the reference ideal method are applied to compute the pilot opportunity index in each area. The proposed method was employed for a pilot study on an oil field in south west Iran.
期刊介绍:
OGST - Revue d''IFP Energies nouvelles is a journal concerning all disciplines and fields relevant to exploration, production, refining, petrochemicals, and the use and economics of petroleum, natural gas, and other sources of energy, in particular alternative energies with in view of the energy transition.
OGST - Revue d''IFP Energies nouvelles has an Editorial Committee made up of 15 leading European personalities from universities and from industry, and is indexed in the major international bibliographical databases.
The journal publishes review articles, in English or in French, and topical issues, giving an overview of the contributions of complementary disciplines in tackling contemporary problems. Each article includes a detailed abstract in English. However, a French translation of the summaries can be provided to readers on request. Summaries of all papers published in the revue from 1974 can be consulted on this site. Over 1 000 papers that have been published since 1997 are freely available in full text form (as pdf files). Currently, over 10 000 downloads are recorded per month.
Researchers in the above fields are invited to submit an article. Rigorous selection of the articles is ensured by a review process that involves IFPEN and external experts as well as the members of the editorial committee. It is preferable to submit the articles in English, either as independent papers or in association with one of the upcoming topical issues.