J. Carrivick, B. Davies, W. James, M. McMillan, N. Glasser
{"title":"A comparison of modelled ice thickness and volume across the entire Antarctic Peninsula region","authors":"J. Carrivick, B. Davies, W. James, M. McMillan, N. Glasser","doi":"10.1080/04353676.2018.1539830","DOIUrl":null,"url":null,"abstract":"ABSTRACT Understanding Antarctic Peninsula glacier evolution requires distributed ice thickness and subglacial topography. To date, 80% of the Antarctic Peninsula mainland ice volume has only been determined at low-resolution (1 km post spacing) and the distributed ice thickness of glaciers on surrounding islands has never been quantified. In this study we applied a perfect plasticity model, selected for its simplicity, low data requirements and minimal parameterisation, to estimate glacier thickness, subglacial topography and ice volume for the entire Antarctic Peninsula region. We compared the output of this simple model to that of a more sophisticated but spatially-restricted model and also to the spatially-coarse but more extensive Bedmap2 dataset. The simple model produced mean differences of 1.4 m (std. dev. 243 m) in comparison with the more sophisticated approach for the mountainous parts of the Peninsula. It produced similar volumes for tidewater glaciers but gave unrealistic ice thickness around grounding lines. Ice thickness across low gradient plateau surfaces are mis-represented by a perfect plasticity model and thus for the southern part of the Peninsula only regional ice volume can be approximated by our model. Overall, with consideration of ice situated below sea level, model results suggest that Trinity Peninsula, Graham Land, the part of Palmer Land north of 74°S and all glaciers on islands contain an ice mass of ∼200 300 Gt, with sea level equivalent of 553 mm (± 11.6 mm). Of this total 8% is from glaciers on islands, 70% of which is from Alexander Island.","PeriodicalId":55112,"journal":{"name":"Geografiska Annaler Series A-Physical Geography","volume":"35 1","pages":"45 - 67"},"PeriodicalIF":1.4000,"publicationDate":"2018-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geografiska Annaler Series A-Physical Geography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/04353676.2018.1539830","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 10
Abstract
ABSTRACT Understanding Antarctic Peninsula glacier evolution requires distributed ice thickness and subglacial topography. To date, 80% of the Antarctic Peninsula mainland ice volume has only been determined at low-resolution (1 km post spacing) and the distributed ice thickness of glaciers on surrounding islands has never been quantified. In this study we applied a perfect plasticity model, selected for its simplicity, low data requirements and minimal parameterisation, to estimate glacier thickness, subglacial topography and ice volume for the entire Antarctic Peninsula region. We compared the output of this simple model to that of a more sophisticated but spatially-restricted model and also to the spatially-coarse but more extensive Bedmap2 dataset. The simple model produced mean differences of 1.4 m (std. dev. 243 m) in comparison with the more sophisticated approach for the mountainous parts of the Peninsula. It produced similar volumes for tidewater glaciers but gave unrealistic ice thickness around grounding lines. Ice thickness across low gradient plateau surfaces are mis-represented by a perfect plasticity model and thus for the southern part of the Peninsula only regional ice volume can be approximated by our model. Overall, with consideration of ice situated below sea level, model results suggest that Trinity Peninsula, Graham Land, the part of Palmer Land north of 74°S and all glaciers on islands contain an ice mass of ∼200 300 Gt, with sea level equivalent of 553 mm (± 11.6 mm). Of this total 8% is from glaciers on islands, 70% of which is from Alexander Island.
期刊介绍:
Geografiska Annaler: Series A, Physical Geography publishes original research in the field of Physical Geography with special emphasis on cold regions/high latitude, high altitude processes, landforms and environmental change, past, present and future.
The journal primarily promotes dissemination of regular research by publishing research-based articles. The journal also publishes thematic issues where collections of articles around a specific themes are gathered. Such themes are determined by the Editors upon request. Finally the journal wishes to promote knowledge and understanding of topics in Physical Geography, their origin, development and current standing through invited review articles.