Learning latent spatio-temporal compositional model for human action recognition

Xiaodan Liang, Liang Lin, Liangliang Cao
{"title":"Learning latent spatio-temporal compositional model for human action recognition","authors":"Xiaodan Liang, Liang Lin, Liangliang Cao","doi":"10.1145/2502081.2502089","DOIUrl":null,"url":null,"abstract":"Action recognition is an important problem in multimedia understanding. This paper addresses this problem by building an expressive compositional action model. We model one action instance in the video with an ensemble of spatio-temporal compositions: a number of discrete temporal anchor frames, each of which is further decomposed to a layout of deformable parts. In this way, our model can identify a Spatio-Temporal And-Or Graph (STAOG) to represent the latent structure of actions \\emph{e.g.} triple jumping, swinging and high jumping. The STAOG model comprises four layers: (i) a batch of leaf-nodes in bottom for detecting various action parts within video patches; (ii) the or-nodes over bottom, i.e. switch variables to activate their children leaf-nodes for structural variability; (iii) the and-nodes within an anchor frame for verifying spatial composition; and (iv) the root-node at top for aggregating scores over temporal anchor frames. Moreover, the contextual interactions are defined between leaf-nodes in both spatial and temporal domains. For model training, we develop a novel weakly supervised learning algorithm which iteratively determines the structural configuration (e.g. the production of leaf-nodes associated with the or-nodes) along with the optimization of multi-layer parameters. By fully exploiting spatio-temporal compositions and interactions, our approach handles well large intra-class action variance (\\emph{e.g.} different views, individual appearances, spatio-temporal structures). The experimental results on the challenging databases demonstrate superior performance of our approach over other methods.","PeriodicalId":20448,"journal":{"name":"Proceedings of the 21st ACM international conference on Multimedia","volume":"113 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2502081.2502089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

Action recognition is an important problem in multimedia understanding. This paper addresses this problem by building an expressive compositional action model. We model one action instance in the video with an ensemble of spatio-temporal compositions: a number of discrete temporal anchor frames, each of which is further decomposed to a layout of deformable parts. In this way, our model can identify a Spatio-Temporal And-Or Graph (STAOG) to represent the latent structure of actions \emph{e.g.} triple jumping, swinging and high jumping. The STAOG model comprises four layers: (i) a batch of leaf-nodes in bottom for detecting various action parts within video patches; (ii) the or-nodes over bottom, i.e. switch variables to activate their children leaf-nodes for structural variability; (iii) the and-nodes within an anchor frame for verifying spatial composition; and (iv) the root-node at top for aggregating scores over temporal anchor frames. Moreover, the contextual interactions are defined between leaf-nodes in both spatial and temporal domains. For model training, we develop a novel weakly supervised learning algorithm which iteratively determines the structural configuration (e.g. the production of leaf-nodes associated with the or-nodes) along with the optimization of multi-layer parameters. By fully exploiting spatio-temporal compositions and interactions, our approach handles well large intra-class action variance (\emph{e.g.} different views, individual appearances, spatio-temporal structures). The experimental results on the challenging databases demonstrate superior performance of our approach over other methods.
学习潜在时空组成模型的人体动作识别
动作识别是多媒体理解中的一个重要问题。本文通过构建一个表达性的组合动作模型来解决这个问题。我们用时空组合的集合来模拟视频中的一个动作实例:许多离散的时间锚帧,每个锚帧都进一步分解为可变形部分的布局。这样,我们的模型可以识别一个时空或图(STAOG)来表示动作的潜在结构,\emph{如}三级跳远、摇摆和跳高。STAOG模型由四层组成:(i)底层的一批叶节点,用于检测视频补丁内的各种动作部分;(ii)底部的or节点,即切换变量以激活其子叶节点以实现结构可变性;(iii)用于验证空间构成的锚框架内的and节点;(iv)顶部的根节点,用于在时间锚框架上聚合分数。此外,上下文交互在空间和时间域的叶节点之间被定义。对于模型训练,我们开发了一种新的弱监督学习算法,该算法迭代地确定结构配置(例如与or节点相关的叶节点的产生)以及多层参数的优化。通过充分利用时空组成和相互作用,我们的方法可以很好地处理大的类内行为差异(\emph{例如}不同的观点,个体外观,时空结构)。在具有挑战性的数据库上的实验结果表明,我们的方法优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信