{"title":"Measurement experiment of deployable large scale reflector antenna with DBF using A-METLAB","authors":"Y. Fujino, T. Orikasa, N. Hamamoto","doi":"10.1109/IMWS.2012.6215775","DOIUrl":null,"url":null,"abstract":"Space base large scale deployable antenna is common element technologies for space development. It will be used not only communication but also observation satellite or solar power satellite. Now, we proposed new satellite communication system called STICS (Satellite/Terrestrial Integrated mobile Communication System) by using large-scale deployable antenna (LDR) of 30m class in the gestational orbit. It has dual communication function that can be connected with both the terrestrial system and the satellite system is composed by using the common terminal with a handheld shape. This communication system will be especially useful for the emergency disaster. For small scale model of STICS satellite beam former and digital bent pipe system, NICT developed 16-element feeding antenna with Digital Beam Former and Channelizer for flexible usage of frequency. To the realistic demonstration, we are now measuring 16-elements DBF with large scale deployable reflector (3.3m Diameter). In this measurement we used A-METLAB (Advanced Microwave Energy Transmission LABoratory) and Plane Polar Near Field Measurement system in Kyoto University. We will introduce preliminary result of this experiment.","PeriodicalId":6308,"journal":{"name":"2012 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications","volume":"45 1","pages":"159-162"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMWS.2012.6215775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Space base large scale deployable antenna is common element technologies for space development. It will be used not only communication but also observation satellite or solar power satellite. Now, we proposed new satellite communication system called STICS (Satellite/Terrestrial Integrated mobile Communication System) by using large-scale deployable antenna (LDR) of 30m class in the gestational orbit. It has dual communication function that can be connected with both the terrestrial system and the satellite system is composed by using the common terminal with a handheld shape. This communication system will be especially useful for the emergency disaster. For small scale model of STICS satellite beam former and digital bent pipe system, NICT developed 16-element feeding antenna with Digital Beam Former and Channelizer for flexible usage of frequency. To the realistic demonstration, we are now measuring 16-elements DBF with large scale deployable reflector (3.3m Diameter). In this measurement we used A-METLAB (Advanced Microwave Energy Transmission LABoratory) and Plane Polar Near Field Measurement system in Kyoto University. We will introduce preliminary result of this experiment.