OptDebug

Muhammad Ali Gulzar, Miryung Kim
{"title":"OptDebug","authors":"Muhammad Ali Gulzar, Miryung Kim","doi":"10.1145/3472883.3487016","DOIUrl":null,"url":null,"abstract":"Fault-isolation is extremely challenging in large scale data processing in cloud environments. Data provenance is a dominant existing approach to isolate data records responsible for a given output. However, data provenance concerns fault isolation only in the data-space, as opposed to fault isolation in the code-space---how can we precisely localize operations or APIs responsible for a given suspicious or incorrect result? We present OptDebug that identifies fault-inducing operations in a dataflow application using three insights. First, debugging is easier with a small-scale input than a large-scale input. So it uses data provenance to simplify the original input records to a smaller set leading to test failures and test successes. Second, keeping track of operation provenance is crucial for debugging. Thus, it leverages automated taint analysis to propagate the lineage of operations downstream with individual records. Lastly, each operation may contribute to test failures to a different degree. Thus OptDebug ranks each operation's spectra---the relative participation frequency in failing vs. passing tests. In our experiments, OptDebug achieves 100% recall and 86% precision in terms of detecting faulty operations and reduces the debugging time by 17x compared to a naïve approach. Overall, OptDebug shows great promise in improving developer productivity in today's complex data processing pipelines by obviating the need to re-execute the program repetitively with different inputs and manually examine program traces to isolate buggy code.","PeriodicalId":91949,"journal":{"name":"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3472883.3487016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Fault-isolation is extremely challenging in large scale data processing in cloud environments. Data provenance is a dominant existing approach to isolate data records responsible for a given output. However, data provenance concerns fault isolation only in the data-space, as opposed to fault isolation in the code-space---how can we precisely localize operations or APIs responsible for a given suspicious or incorrect result? We present OptDebug that identifies fault-inducing operations in a dataflow application using three insights. First, debugging is easier with a small-scale input than a large-scale input. So it uses data provenance to simplify the original input records to a smaller set leading to test failures and test successes. Second, keeping track of operation provenance is crucial for debugging. Thus, it leverages automated taint analysis to propagate the lineage of operations downstream with individual records. Lastly, each operation may contribute to test failures to a different degree. Thus OptDebug ranks each operation's spectra---the relative participation frequency in failing vs. passing tests. In our experiments, OptDebug achieves 100% recall and 86% precision in terms of detecting faulty operations and reduces the debugging time by 17x compared to a naïve approach. Overall, OptDebug shows great promise in improving developer productivity in today's complex data processing pipelines by obviating the need to re-execute the program repetitively with different inputs and manually examine program traces to isolate buggy code.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信