Fuqin Li, D. Jupp, B. Markham, I. Lau, C. Ong, G. Byrne, M. Thankappan, Simon Oliver, T. Malthus, P. Fearns
{"title":"Choice of Solar Spectral Irradiance Model for Current and Future Remote Sensing Satellite Missions","authors":"Fuqin Li, D. Jupp, B. Markham, I. Lau, C. Ong, G. Byrne, M. Thankappan, Simon Oliver, T. Malthus, P. Fearns","doi":"10.3390/rs15133391","DOIUrl":null,"url":null,"abstract":"The accuracy of surface reflectance estimation for satellite sensors using radiance-based calibrations can depend significantly on the choice of solar spectral irradiance (or solar spectrum) model used for atmospheric correction. Selecting an accurate solar spectrum model is also important for radiance-based sensor calibration and estimation of atmospheric parameters from irradiance observations. Previous research showed that Landsat 8 could be used to evaluate the quality of solar spectrum models. This paper applies the analysis using five previously evaluated and three more recent solar spectrum models using both Landsat 8 (OLI) and Landsat 9 (OLI2). The study was further extended down to 10 nm resolution and a wavelength range from Ultraviolet A (UVA) to shortwave infrared (SWIR) (370–2480 nm) using inversion of field irradiance measurements. The results using OLI and OLI2 as well as the inversion of irradiance measurements were that the more recent Chance and Kurucz (SA2010), Meftah (SOLAR-ISS) and Coddington (TSIS-1) models performed better than all of the previous models. The results were illustrated by simulating dark and bright surface reflectance signatures obtained by atmospheric correction with the different solar spectrum models. The results showed that if the SA2010 model is assumed to be the “true” solar irradiance, using the TSIS-1 or the SOLAR-ISS model will not significantly change the estimated ground reflectance. The other models differ (some to a large extent) in varying wavelength areas.","PeriodicalId":20944,"journal":{"name":"Remote. Sens.","volume":"7 1","pages":"3391"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote. Sens.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/rs15133391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The accuracy of surface reflectance estimation for satellite sensors using radiance-based calibrations can depend significantly on the choice of solar spectral irradiance (or solar spectrum) model used for atmospheric correction. Selecting an accurate solar spectrum model is also important for radiance-based sensor calibration and estimation of atmospheric parameters from irradiance observations. Previous research showed that Landsat 8 could be used to evaluate the quality of solar spectrum models. This paper applies the analysis using five previously evaluated and three more recent solar spectrum models using both Landsat 8 (OLI) and Landsat 9 (OLI2). The study was further extended down to 10 nm resolution and a wavelength range from Ultraviolet A (UVA) to shortwave infrared (SWIR) (370–2480 nm) using inversion of field irradiance measurements. The results using OLI and OLI2 as well as the inversion of irradiance measurements were that the more recent Chance and Kurucz (SA2010), Meftah (SOLAR-ISS) and Coddington (TSIS-1) models performed better than all of the previous models. The results were illustrated by simulating dark and bright surface reflectance signatures obtained by atmospheric correction with the different solar spectrum models. The results showed that if the SA2010 model is assumed to be the “true” solar irradiance, using the TSIS-1 or the SOLAR-ISS model will not significantly change the estimated ground reflectance. The other models differ (some to a large extent) in varying wavelength areas.