A Simple Method to Estimate Discrete-type Random Coefficients Logit Models

Naoshi Doi
{"title":"A Simple Method to Estimate Discrete-type Random Coefficients Logit Models","authors":"Naoshi Doi","doi":"10.2139/ssrn.3729184","DOIUrl":null,"url":null,"abstract":"This paper proposes a new method for estimating random coefficients logit models using aggregate data. The method is applicable for models with discrete-type heterogeneity in consumer tastes when additional data on the total sales for each consumer type are available. The type-level data do not have to be divided by product. The method analytically obtains the value of the econometric error term and thus does not require numerical calculations, such as the contraction mapping established by Berry, Levinsohn, and Pakes (1995). Consequently, the method no longer suffers from problems due to numerical errors in the contraction mapping, including lack of convergence and incorrect parameter estimates. Moreover, the computation time is drastically reduced.","PeriodicalId":11837,"journal":{"name":"ERN: Other IO: Empirical Studies of Firms & Markets (Topic)","volume":"133 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other IO: Empirical Studies of Firms & Markets (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3729184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a new method for estimating random coefficients logit models using aggregate data. The method is applicable for models with discrete-type heterogeneity in consumer tastes when additional data on the total sales for each consumer type are available. The type-level data do not have to be divided by product. The method analytically obtains the value of the econometric error term and thus does not require numerical calculations, such as the contraction mapping established by Berry, Levinsohn, and Pakes (1995). Consequently, the method no longer suffers from problems due to numerical errors in the contraction mapping, including lack of convergence and incorrect parameter estimates. Moreover, the computation time is drastically reduced.
估计离散型随机系数Logit模型的一种简单方法
本文提出了一种利用聚合数据估计随机系数logit模型的新方法。当每种消费者类型的总销售额的附加数据可用时,该方法适用于具有离散型消费者口味异质性的模型。类型级数据不必除以乘积。该方法可以解析地获得计量误差项的值,因此不需要数值计算,例如Berry, Levinsohn, and Pakes(1995)建立的收缩映射。因此,该方法不再遭受由于收缩映射中的数值误差造成的问题,包括缺乏收敛性和不正确的参数估计。而且,大大减少了计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信