Towards automatic experimentation of educational knowledge

Yun-En Liu, Travis Mandel, E. Brunskill, Zoran Popovic
{"title":"Towards automatic experimentation of educational knowledge","authors":"Yun-En Liu, Travis Mandel, E. Brunskill, Zoran Popovic","doi":"10.1145/2556288.2557392","DOIUrl":null,"url":null,"abstract":"We present a general automatic experimentation and hypothesis generation framework that utilizes a large set of users to explore the effects of different parts of an intervention parameter space on any objective function. We also incorporate importance sampling, allowing us to run these automatic experiments even if we cannot give out the exact intervention distributions that we want. To show the utility of this framework, we present an implementation in the domain of fractions and numberlines, using an online educational game as the source of players. Our system is able to automatically explore the parameter space and generate hypotheses about what types of numberlines lead to maximal short-term transfer; testing on a separate dataset shows the most promising hypotheses are valid. We briefly discuss our results in the context of the wider educational literature, showing that one of our results is not explained by current research on multiple fraction representations, thus proving our ability to generate potentially interesting hypotheses to test.","PeriodicalId":20599,"journal":{"name":"Proceedings of the SIGCHI Conference on Human Factors in Computing Systems","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIGCHI Conference on Human Factors in Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2556288.2557392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

We present a general automatic experimentation and hypothesis generation framework that utilizes a large set of users to explore the effects of different parts of an intervention parameter space on any objective function. We also incorporate importance sampling, allowing us to run these automatic experiments even if we cannot give out the exact intervention distributions that we want. To show the utility of this framework, we present an implementation in the domain of fractions and numberlines, using an online educational game as the source of players. Our system is able to automatically explore the parameter space and generate hypotheses about what types of numberlines lead to maximal short-term transfer; testing on a separate dataset shows the most promising hypotheses are valid. We briefly discuss our results in the context of the wider educational literature, showing that one of our results is not explained by current research on multiple fraction representations, thus proving our ability to generate potentially interesting hypotheses to test.
走向教育知识的自动实验
我们提出了一个通用的自动实验和假设生成框架,该框架利用大量用户来探索干预参数空间的不同部分对任何目标函数的影响。我们还结合了重要性抽样,允许我们运行这些自动实验,即使我们不能给出我们想要的确切的干预分布。为了展示该框架的实用性,我们在分数和数字线领域提出了一个实现,使用在线教育游戏作为玩家的来源。我们的系统能够自动探索参数空间,并产生关于哪种类型的数字线导致最大的短期转移的假设;在一个单独的数据集上的测试表明,最有希望的假设是有效的。我们在更广泛的教育文献背景下简要讨论了我们的结果,表明我们的一个结果不能用当前对多分数表示的研究来解释,从而证明我们有能力产生潜在的有趣的假设来测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信