Collaborative filtering denoising algorithm based on the nonlocal centralized sparse representation model

Jing Liu, Ruijiao Liu, Jinlei Chen, Yajie Yang, Douli Ma
{"title":"Collaborative filtering denoising algorithm based on the nonlocal centralized sparse representation model","authors":"Jing Liu, Ruijiao Liu, Jinlei Chen, Yajie Yang, Douli Ma","doi":"10.1109/CISP-BMEI.2017.8301951","DOIUrl":null,"url":null,"abstract":"An improved image denoising algorithm based on block-matching and 3D collaborative filtering (BM3D) is proposed in this manuscript. Instead of using the same filtering model for all patches in an image, we employ two different nonlocal filtering models in edge and smooth regions, respectively. We realize it by using the nonlocal centralized sparse representation (NCSR) to capture both local sparsity of wavelet coefficients and nonlocal similarity of grouped blocks. Experimental results demonstrate that the proposed method outperforms several state-of-the-art denoising methods in terms of objective metrics and visual quality.","PeriodicalId":6474,"journal":{"name":"2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"84 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI.2017.8301951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

An improved image denoising algorithm based on block-matching and 3D collaborative filtering (BM3D) is proposed in this manuscript. Instead of using the same filtering model for all patches in an image, we employ two different nonlocal filtering models in edge and smooth regions, respectively. We realize it by using the nonlocal centralized sparse representation (NCSR) to capture both local sparsity of wavelet coefficients and nonlocal similarity of grouped blocks. Experimental results demonstrate that the proposed method outperforms several state-of-the-art denoising methods in terms of objective metrics and visual quality.
基于非局部集中稀疏表示模型的协同滤波去噪算法
提出了一种基于块匹配和三维协同滤波(BM3D)的图像去噪算法。我们不是对图像中的所有斑块使用相同的滤波模型,而是分别在边缘和光滑区域使用两种不同的非局部滤波模型。我们利用非局部集中稀疏表示(NCSR)来捕获小波系数的局部稀疏性和分组块的非局部相似度。实验结果表明,该方法在客观度量和视觉质量方面优于几种最先进的去噪方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信