Optimal dynamic partial order reduction

P. Abdulla, Stavros Aronis, B. Jonsson, Konstantinos Sagonas
{"title":"Optimal dynamic partial order reduction","authors":"P. Abdulla, Stavros Aronis, B. Jonsson, Konstantinos Sagonas","doi":"10.1145/2535838.2535845","DOIUrl":null,"url":null,"abstract":"Stateless model checking is a powerful technique for program verification, which however suffers from an exponential growth in the number of explored executions. A successful technique for reducing this number, while still maintaining complete coverage, is Dynamic Partial Order Reduction (DPOR). We present a new DPOR algorithm, which is the first to be provably optimal in that it always explores the minimal number of executions. It is based on a novel class of sets, called source sets, which replace the role of persistent sets in previous algorithms. First, we show how to modify an existing DPOR algorithm to work with source sets, resulting in an efficient and simple to implement algorithm. Second, we extend this algorithm with a novel mechanism, called wakeup trees, that allows to achieve optimality. We have implemented both algorithms in a stateless model checking tool for Erlang programs. Experiments show that source sets significantly increase the performance and that wakeup trees incur only a small overhead in both time and space.","PeriodicalId":20683,"journal":{"name":"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"182","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2535838.2535845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 182

Abstract

Stateless model checking is a powerful technique for program verification, which however suffers from an exponential growth in the number of explored executions. A successful technique for reducing this number, while still maintaining complete coverage, is Dynamic Partial Order Reduction (DPOR). We present a new DPOR algorithm, which is the first to be provably optimal in that it always explores the minimal number of executions. It is based on a novel class of sets, called source sets, which replace the role of persistent sets in previous algorithms. First, we show how to modify an existing DPOR algorithm to work with source sets, resulting in an efficient and simple to implement algorithm. Second, we extend this algorithm with a novel mechanism, called wakeup trees, that allows to achieve optimality. We have implemented both algorithms in a stateless model checking tool for Erlang programs. Experiments show that source sets significantly increase the performance and that wakeup trees incur only a small overhead in both time and space.
最优动态偏序约简
无状态模型检查是一种强大的程序验证技术,然而,它受到探索执行数量的指数增长的影响。在保持完全覆盖的同时减少这个数字的一种成功技术是动态偏序约简(DPOR)。我们提出了一种新的DPOR算法,它是第一个被证明是最优的算法,因为它总是探索最小的执行次数。它基于一种新的集类,称为源集,它取代了以前算法中持久集的角色。首先,我们将展示如何修改现有的DPOR算法以使用源集,从而生成高效且易于实现的算法。其次,我们用一种叫做唤醒树的新机制扩展了这个算法,它可以实现最优性。我们在Erlang程序的无状态模型检查工具中实现了这两种算法。实验表明,源集显著提高了性能,唤醒树在时间和空间上的开销很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信