Distributed Unbalanced Voltage Suppression in Bipolar DC Microgrids with Smart Loads

Javad Khodabakhsh, G. Moschopoulos
{"title":"Distributed Unbalanced Voltage Suppression in Bipolar DC Microgrids with Smart Loads","authors":"Javad Khodabakhsh, G. Moschopoulos","doi":"10.1109/APEC42165.2021.9487360","DOIUrl":null,"url":null,"abstract":"Bipolar DC microgrids (BDC-MGs) have been developed to improve the performance of conventional DC microgrids (DC-MGs). Voltage unbalances between the positive and negative poles, however, reduce system efficiency, make power flow control more complex, and create issues in hybrid AC-DC microgrids. In general, centralized and distributed approaches are proposed in the literature in order to address the voltage unbalance issues in BDC-MGs. Distributed approaches are more robust against a single point of failure and more scalable than centralized solutions. This paper proposes a new distributed voltage balancing method for BDC-MGs with three-wire loads that are operated as smart loads in BDC-MGs. This method relies on the unused capacity of three-wire power electronic converters in the DC-MGs so that no additional converter is required. The proposed voltage balancing method’s feasibility is confirmed with simulation results obtained from MATLAB/Simulink.","PeriodicalId":7050,"journal":{"name":"2021 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC42165.2021.9487360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Bipolar DC microgrids (BDC-MGs) have been developed to improve the performance of conventional DC microgrids (DC-MGs). Voltage unbalances between the positive and negative poles, however, reduce system efficiency, make power flow control more complex, and create issues in hybrid AC-DC microgrids. In general, centralized and distributed approaches are proposed in the literature in order to address the voltage unbalance issues in BDC-MGs. Distributed approaches are more robust against a single point of failure and more scalable than centralized solutions. This paper proposes a new distributed voltage balancing method for BDC-MGs with three-wire loads that are operated as smart loads in BDC-MGs. This method relies on the unused capacity of three-wire power electronic converters in the DC-MGs so that no additional converter is required. The proposed voltage balancing method’s feasibility is confirmed with simulation results obtained from MATLAB/Simulink.
智能负载下双极直流微电网的分布式不平衡电压抑制
双极直流微电网(bdc - mg)是为了改善传统直流微电网的性能而开发的。然而,正负极之间的电压不平衡会降低系统效率,使潮流控制更加复杂,并在交直流混合微电网中产生问题。一般来说,文献中提出了集中式和分布式方法来解决bdc - mg中的电压不平衡问题。对于单点故障,分布式方法更加健壮,并且比集中式解决方案更具可伸缩性。本文提出了一种新的分布式电压平衡方法,该方法适用于具有三线制负载的bdc - mg中作为智能负载运行的bdc - mg。该方法依赖于dc - mg中三线制电力电子转换器的未使用容量,因此不需要额外的转换器。通过MATLAB/Simulink的仿真结果验证了所提出的电压平衡方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信