A. Leonardi, M. Pirulli, M. Barbero, F. Barpi, M. Borri-Brunetto, O. Pallara, C. Scavia, V. Segor
{"title":"Impact of Debris Flows on Filter Barriers: Analysis Based on Site Monitoring Data","authors":"A. Leonardi, M. Pirulli, M. Barbero, F. Barpi, M. Borri-Brunetto, O. Pallara, C. Scavia, V. Segor","doi":"10.2113/EEG-D-20-00013","DOIUrl":null,"url":null,"abstract":"\n Debris flows are one of the most complex and devastating natural phenomena, and they affect mountainous areas throughout the world. Structural measures are currently adopted to mitigate the related hazard in urbanized areas. However, their design requires an estimate of the impact force, which is an open issue. The numerous formulae proposed in the literature require the assignment of empirical coefficients and an evaluation of the kinematic characteristics of the incoming flow. Both are generally not known a priori. In this article, we present the Grand Valey torrent site (Italian Alps). A monitoring system made up of strain gauges was installed on a filter barrier at the site, allowing the evaluation of impact forces. The system provides pivotal information for calibrating impact formulae. Two debris flows occurred during the monitoring period. We present the interpretation of videos, impact measurements, and the results of numerical analyses. The combined analysis allows a back calculation of the events in terms of forces, flow depth, and velocity. Thus, we investigate the applicability of the impact formulae suggested in the literature and of the recommended empirical coefficients. The results highlight that hydrostatic effects dominated the impact during the first event, while hydrodynamic effects prevailed in the second one.","PeriodicalId":50518,"journal":{"name":"Environmental & Engineering Geoscience","volume":"32 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental & Engineering Geoscience","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2113/EEG-D-20-00013","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 2
Abstract
Debris flows are one of the most complex and devastating natural phenomena, and they affect mountainous areas throughout the world. Structural measures are currently adopted to mitigate the related hazard in urbanized areas. However, their design requires an estimate of the impact force, which is an open issue. The numerous formulae proposed in the literature require the assignment of empirical coefficients and an evaluation of the kinematic characteristics of the incoming flow. Both are generally not known a priori. In this article, we present the Grand Valey torrent site (Italian Alps). A monitoring system made up of strain gauges was installed on a filter barrier at the site, allowing the evaluation of impact forces. The system provides pivotal information for calibrating impact formulae. Two debris flows occurred during the monitoring period. We present the interpretation of videos, impact measurements, and the results of numerical analyses. The combined analysis allows a back calculation of the events in terms of forces, flow depth, and velocity. Thus, we investigate the applicability of the impact formulae suggested in the literature and of the recommended empirical coefficients. The results highlight that hydrostatic effects dominated the impact during the first event, while hydrodynamic effects prevailed in the second one.
期刊介绍:
The Environmental & Engineering Geoscience Journal publishes peer-reviewed manuscripts that address issues relating to the interaction of people with hydrologic and geologic systems. Theoretical and applied contributions are appropriate, and the primary criteria for acceptance are scientific and technical merit.