Short-Term Forecasting of District Heating Demand

R. Petrichenko, D. Sobolevsky, A. Sauhats
{"title":"Short-Term Forecasting of District Heating Demand","authors":"R. Petrichenko, D. Sobolevsky, A. Sauhats","doi":"10.1109/EEEIC.2018.8494362","DOIUrl":null,"url":null,"abstract":"Focus of the paper is statistical data pre-processing before it applies for prediction the thermal load in district heating networks, focusing on day-ahead hourly planning. Such a planning is highly important for cogeneration plants participating in electricity wholesale markets. Article considers the possibility of correcting detected inconsistencies into district heating statistical data using forecasted values of the heat demand. The case study is based on the examples of heat supply of a large city, gas fired cogeneration power plants and real world data. The cost of errors in the prediction of heat consumption is estimated.","PeriodicalId":6563,"journal":{"name":"2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)","volume":"117 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EEEIC.2018.8494362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Focus of the paper is statistical data pre-processing before it applies for prediction the thermal load in district heating networks, focusing on day-ahead hourly planning. Such a planning is highly important for cogeneration plants participating in electricity wholesale markets. Article considers the possibility of correcting detected inconsistencies into district heating statistical data using forecasted values of the heat demand. The case study is based on the examples of heat supply of a large city, gas fired cogeneration power plants and real world data. The cost of errors in the prediction of heat consumption is estimated.
区域供热需求的短期预测
本文的研究重点是统计数据在应用于区域供热网热负荷预测前的预处理,重点是日前时规划。这样的规划对于参与电力批发市场的热电联产电厂是非常重要的。本文考虑了利用热需求预测值对区域供热统计数据中检测到的不一致进行校正的可能性。本案例研究以某大城市供热、燃气热电联产电厂为例,结合实际数据。对热耗预测误差的代价进行了估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信