R. Uzun, Ü. Başkaya, Z. Çetin, Y. Kılıç, O. Gündüz, Adem Bakkaloğlu
{"title":"Effect of strain ratio on hydrogen permeability properties of low carbon enamel steel","authors":"R. Uzun, Ü. Başkaya, Z. Çetin, Y. Kılıç, O. Gündüz, Adem Bakkaloğlu","doi":"10.1051/metal/2021053","DOIUrl":null,"url":null,"abstract":"In this study, the effect of varying strain levels on hydrogen permeability properties were investigated. Distinct strain levels (10% and 40%) were carried out on the deep drawing test samples by using Marciniak die to simulate the forming process. Amount of strain on deep drawn material was calculated by GOM’s ARAMIS 3D deformation measurement system. Hydrogen diffusion coefficient and permeation time were calculated by using Helios II system. Light optical microscope (LOM) and scanning electron microscopy (SEM) were used for microstructure characterization. Automated inclusion/precipitation analysis was performed by Thermoscientific Explorer-4. By this study, it is aimed to understand the hydrogen permeation properties of ultra-low carbon IF steel material with varying strain values. Finally, it was determined that number of inclusion/precipitation per mm2 was significantly increased as a function of strain ratio, which improves hydrogen permeation properties.","PeriodicalId":18527,"journal":{"name":"Metallurgical Research & Technology","volume":"46 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical Research & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1051/metal/2021053","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the effect of varying strain levels on hydrogen permeability properties were investigated. Distinct strain levels (10% and 40%) were carried out on the deep drawing test samples by using Marciniak die to simulate the forming process. Amount of strain on deep drawn material was calculated by GOM’s ARAMIS 3D deformation measurement system. Hydrogen diffusion coefficient and permeation time were calculated by using Helios II system. Light optical microscope (LOM) and scanning electron microscopy (SEM) were used for microstructure characterization. Automated inclusion/precipitation analysis was performed by Thermoscientific Explorer-4. By this study, it is aimed to understand the hydrogen permeation properties of ultra-low carbon IF steel material with varying strain values. Finally, it was determined that number of inclusion/precipitation per mm2 was significantly increased as a function of strain ratio, which improves hydrogen permeation properties.
期刊介绍:
Metallurgical Research and Technology (MRT) is a peer-reviewed bi-monthly journal publishing original high-quality research papers in areas ranging from process metallurgy to metal product properties and applications of ferrous and non-ferrous metals and alloys, including light-metals. It covers also the materials involved in the metal processing as ores, refractories and slags.
The journal is listed in the citation index Web of Science and has an Impact Factor.
It is highly concerned by the technological innovation as a support of the metallurgical industry at a time when it has to tackle severe challenges like energy, raw materials, sustainability, environment... Strengthening and enhancing the dialogue between science and industry is at the heart of the scope of MRT. This is why it welcomes manuscripts focusing on industrial practice, as well as basic metallurgical knowledge or review articles.