Hardware acceleration of TEA and XTEA algorithms on FPGA, GPU and multi-core processors (abstract only)

V. Venugopal, D. Shila
{"title":"Hardware acceleration of TEA and XTEA algorithms on FPGA, GPU and multi-core processors (abstract only)","authors":"V. Venugopal, D. Shila","doi":"10.1145/2435264.2435326","DOIUrl":null,"url":null,"abstract":"Field programmable gate arrays (FPGA) are extensively used for rapid prototyping in embedded system applications. While hardware acceleration can be done via specialized processors like a Graphical Processing Unit (GPU), they can also be accomplished with FPGAs for more specialized scenarios. GPUs essentially consist of massively parallel cores and have high memory bandwidth; FPGAs, on the other hand, provide flexibility in terms of customizable I/O and computational resources. In this paper, we explore the usage of GPUs and FPGAs as cryptographic co-processors in streaming dataflow systems with huge rate of data inhalation. Two classic lightweight encryption algorithms, Tiny Encryption Algorithm (TEA) and Extended Tiny Encryption Algorithm (XTEA), are targeted for implementation on GPUs and FPGAs. The GPU implementations of TEA and XTEA in this study depict a maximum speedup of 13x over CPU based implementation. The pipelined FPGA implementation is able to realize a throughput of 6-9x more than the GPU for small plaintext sizes.","PeriodicalId":87257,"journal":{"name":"FPGA. ACM International Symposium on Field-Programmable Gate Arrays","volume":"107 1","pages":"270"},"PeriodicalIF":0.0000,"publicationDate":"2013-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FPGA. ACM International Symposium on Field-Programmable Gate Arrays","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2435264.2435326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Field programmable gate arrays (FPGA) are extensively used for rapid prototyping in embedded system applications. While hardware acceleration can be done via specialized processors like a Graphical Processing Unit (GPU), they can also be accomplished with FPGAs for more specialized scenarios. GPUs essentially consist of massively parallel cores and have high memory bandwidth; FPGAs, on the other hand, provide flexibility in terms of customizable I/O and computational resources. In this paper, we explore the usage of GPUs and FPGAs as cryptographic co-processors in streaming dataflow systems with huge rate of data inhalation. Two classic lightweight encryption algorithms, Tiny Encryption Algorithm (TEA) and Extended Tiny Encryption Algorithm (XTEA), are targeted for implementation on GPUs and FPGAs. The GPU implementations of TEA and XTEA in this study depict a maximum speedup of 13x over CPU based implementation. The pipelined FPGA implementation is able to realize a throughput of 6-9x more than the GPU for small plaintext sizes.
TEA和XTEA算法在FPGA、GPU和多核处理器上的硬件加速(仅摘要)
现场可编程门阵列(FPGA)广泛用于嵌入式系统应用中的快速原型设计。虽然硬件加速可以通过图形处理单元(GPU)等专用处理器来完成,但对于更专业的场景,它们也可以通过fpga来完成。gpu本质上由大量并行核组成,具有高内存带宽;另一方面,fpga在可定制I/O和计算资源方面提供了灵活性。本文探讨了gpu和fpga作为加密协处理器在数据吸入率极高的流数据流系统中的应用。两种经典的轻量级加密算法,微型加密算法(TEA)和扩展微型加密算法(XTEA),目标是在gpu和fpga上实现。在本研究中,TEA和XTEA的GPU实现与基于CPU的实现相比,最大速度提高了13倍。对于较小的明文大小,流水线FPGA实现能够实现比GPU多6-9倍的吞吐量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信