Motion detection with spatiotemporal sequences

T. Zhang, Haixian Wang
{"title":"Motion detection with spatiotemporal sequences","authors":"T. Zhang, Haixian Wang","doi":"10.1109/ICASSP.2014.6854422","DOIUrl":null,"url":null,"abstract":"In this paper we propose a new method to detect motion in a greyscale video. In our algorithm, several spatiotemporal sequences with different lengths are used to filter the frames in the video. Then these filtered images are combined together to get the real motion. The performance of our algorithm is tested with several human action datasets in which different actions are performed. The detected results of our algorithm are compared with previous works and the targets we extract manually. The experimental results show that the responses of our filter are close to the real action of the human in the original video.","PeriodicalId":6545,"journal":{"name":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"6 1","pages":"4344-4348"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2014.6854422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we propose a new method to detect motion in a greyscale video. In our algorithm, several spatiotemporal sequences with different lengths are used to filter the frames in the video. Then these filtered images are combined together to get the real motion. The performance of our algorithm is tested with several human action datasets in which different actions are performed. The detected results of our algorithm are compared with previous works and the targets we extract manually. The experimental results show that the responses of our filter are close to the real action of the human in the original video.
基于时空序列的运动检测
本文提出了一种新的灰度视频运动检测方法。在我们的算法中,使用多个不同长度的时空序列来过滤视频中的帧。然后将这些过滤后的图像组合在一起,得到真实的运动。我们的算法的性能用几个人类动作数据集进行了测试,其中执行了不同的动作。将本文算法的检测结果与前人的工作以及人工提取的目标进行了比较。实验结果表明,该滤波器的响应接近原始视频中人的真实动作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信