{"title":"Blind estimation and low-rate sampling of sparse mimo systems with common support","authors":"Ying Xiong, Yue M. Lu","doi":"10.1109/ICASSP.2012.6288768","DOIUrl":null,"url":null,"abstract":"We present a blind estimation algorithm for multi-input and multi-output (MIMO) systems with sparse common support. Key to the proposed algorithm is a matrix generalization of the classical annihilating filter technique, which allows us to estimate the nonlinear parameters of the channels through an efficient and noniterative procedure. An attractive property of the proposed algorithm is that it only needs the sensor measurements at a narrow frequency band. By exploiting this feature, we can derive efficient sub-Nyquist sampling schemes which significantly reduce the number of samples that need to be retained at each sensor. Numerical simulations verify the accuracy of the proposed estimation algorithm and its robustness in the presence of noise.","PeriodicalId":6443,"journal":{"name":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2012.6288768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
We present a blind estimation algorithm for multi-input and multi-output (MIMO) systems with sparse common support. Key to the proposed algorithm is a matrix generalization of the classical annihilating filter technique, which allows us to estimate the nonlinear parameters of the channels through an efficient and noniterative procedure. An attractive property of the proposed algorithm is that it only needs the sensor measurements at a narrow frequency band. By exploiting this feature, we can derive efficient sub-Nyquist sampling schemes which significantly reduce the number of samples that need to be retained at each sensor. Numerical simulations verify the accuracy of the proposed estimation algorithm and its robustness in the presence of noise.