Faster Exponential Algorithm for Permutation Pattern Matching

Paweł Gawrychowski, Mateusz Rzepecki
{"title":"Faster Exponential Algorithm for Permutation Pattern Matching","authors":"Paweł Gawrychowski, Mateusz Rzepecki","doi":"10.1137/1.9781611977066.21","DOIUrl":null,"url":null,"abstract":"The Permutation Pattern Matching problem asks, given two permutations $\\sigma$ on $n$ elements and $\\pi$, whether $\\sigma$ admits a subsequence with the same relative order as $\\pi$ (or, in the counting version, how many such subsequences are there). This natural problem was shown by Bose, Buss and Lubiw [IPL 1998] to be NP-complete, and hence we should seek exact exponential time solutions. The asymptotically fastest such solution up to date, by Berendsohn, Kozma and Marx [IPEC 2019], works in $\\mathcal{O}(1.6181^n)$ time. We design a simple and faster $\\mathcal{O}(1.415^{n})$ time algorithm for both the detection and the counting version. We also prove that this is optimal among a certain natural class of algorithms.","PeriodicalId":93491,"journal":{"name":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","volume":"51 1","pages":"279-284"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611977066.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The Permutation Pattern Matching problem asks, given two permutations $\sigma$ on $n$ elements and $\pi$, whether $\sigma$ admits a subsequence with the same relative order as $\pi$ (or, in the counting version, how many such subsequences are there). This natural problem was shown by Bose, Buss and Lubiw [IPL 1998] to be NP-complete, and hence we should seek exact exponential time solutions. The asymptotically fastest such solution up to date, by Berendsohn, Kozma and Marx [IPEC 2019], works in $\mathcal{O}(1.6181^n)$ time. We design a simple and faster $\mathcal{O}(1.415^{n})$ time algorithm for both the detection and the counting version. We also prove that this is optimal among a certain natural class of algorithms.
排列模式匹配的快速指数算法
排列模式匹配问题的问题是,给定$n$元素和$\pi$上的两个排列$\sigma$, $\sigma$是否允许与$\pi$具有相同相对顺序的子序列(或者,在计数版本中,有多少个这样的子序列)。Bose, Buss和Lubiw [IPL 1998]证明了这个自然问题是np完全的,因此我们应该寻求精确的指数时间解。迄今为止,由Berendsohn, Kozma和Marx [IPEC 2019]提出的渐近最快的解决方案在$\mathcal{O}(1.6181^n)$时间内运行。我们设计了一个简单而快速的$\mathcal{O}(1.415^{n})$时间算法,用于检测和计数版本。我们还证明了这在某一类自然算法中是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信