{"title":"Text Mining News System - Quantifying Certain Phenomena Effect on the Stock Market Behavior","authors":"M. Tirea, V. Negru","doi":"10.1109/SYNASC.2015.65","DOIUrl":null,"url":null,"abstract":"Stock market prediction is influenced by manyinternal and external factors. One of these factors are the newsarticles and financial reports related to each listed company. This paper describes a system that is able to extract relevantinformation from this type of textual documents, correlate themwith the stock price movement and determine whether ornot a new released news can and in which proportion willinfluence the market behavior. Predefined ontologies are used forclassifying the news articles and automated ontology extractionfor classifying concepts and super - concepts, on an attempt tomake a semantic mining of the text news. The system is basedon a Multi-Agent Architecture that will investigate, extract andcorrelate the textual data message with the price evolution inorder to better determine buy/sell moments, the trend directionand optimize an investment portfolio. In order to validate ourmodel a prototype was developed and applied to the BucharestStock Exchange Market listed companies.","PeriodicalId":6488,"journal":{"name":"2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"5 1","pages":"391-398"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2015.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Stock market prediction is influenced by manyinternal and external factors. One of these factors are the newsarticles and financial reports related to each listed company. This paper describes a system that is able to extract relevantinformation from this type of textual documents, correlate themwith the stock price movement and determine whether ornot a new released news can and in which proportion willinfluence the market behavior. Predefined ontologies are used forclassifying the news articles and automated ontology extractionfor classifying concepts and super - concepts, on an attempt tomake a semantic mining of the text news. The system is basedon a Multi-Agent Architecture that will investigate, extract andcorrelate the textual data message with the price evolution inorder to better determine buy/sell moments, the trend directionand optimize an investment portfolio. In order to validate ourmodel a prototype was developed and applied to the BucharestStock Exchange Market listed companies.