{"title":"Optimized deep learning model for mango grading: Hybridizing lion plus firefly algorithm","authors":"M. Tripathi, Dhananjay D. Maktedar","doi":"10.1049/IPR2.12163","DOIUrl":null,"url":null,"abstract":"This paper intends to present an automated mango grading system under four stages (1) pre-processing, (2) feature extraction, (3) optimal feature selection and (4) classification. Initially, the input image is subjected to the pre-processing phase, where the reading, sizing, noise removal and segmentation process happens. Subsequently, the features are extracted from the pre-processed image. To make the system more effective, from the extracted features, the optimal features are selected using a new hybrid optimization algorithm termed the lion assisted firefly algorithm (LA-FF), which is the combination of LA and FF, respectively. Then, the optimal features are given for the classification process, where the optimized deep convolutional neural network (CNN) is deployed. As a major contribution, the configuration of CNN is fine-tuned via selecting the optimal count of convolutional layers. This obviously enhances the classification accuracy in grading system. For fine-tuning the convolutional layers in the deep CNN, the LA-FF algorithm is used so that the classifier is optimized. The grading is evaluated on the basis of healthydiseased, ripe-unripe and bigmediumvery big cases with respect to type I and type II measures and the performance of the proposed grading model is compared over the other state-of-the-art models.","PeriodicalId":13486,"journal":{"name":"IET Image Process.","volume":"16 1","pages":"1940-1956"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Image Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/IPR2.12163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
This paper intends to present an automated mango grading system under four stages (1) pre-processing, (2) feature extraction, (3) optimal feature selection and (4) classification. Initially, the input image is subjected to the pre-processing phase, where the reading, sizing, noise removal and segmentation process happens. Subsequently, the features are extracted from the pre-processed image. To make the system more effective, from the extracted features, the optimal features are selected using a new hybrid optimization algorithm termed the lion assisted firefly algorithm (LA-FF), which is the combination of LA and FF, respectively. Then, the optimal features are given for the classification process, where the optimized deep convolutional neural network (CNN) is deployed. As a major contribution, the configuration of CNN is fine-tuned via selecting the optimal count of convolutional layers. This obviously enhances the classification accuracy in grading system. For fine-tuning the convolutional layers in the deep CNN, the LA-FF algorithm is used so that the classifier is optimized. The grading is evaluated on the basis of healthydiseased, ripe-unripe and bigmediumvery big cases with respect to type I and type II measures and the performance of the proposed grading model is compared over the other state-of-the-art models.