Incorporating circulation data in relevancy rankings for search algorithms in library collections

H. Green, Kirk Hess, Richard Hislop
{"title":"Incorporating circulation data in relevancy rankings for search algorithms in library collections","authors":"H. Green, Kirk Hess, Richard Hislop","doi":"10.1109/eScience.2012.6404447","DOIUrl":null,"url":null,"abstract":"This paper demonstrates a series of analyses to calculate new clusters of shared subject headings among items in a library collection. The paper establishes a method of reconstituting anonymous circulation data from a library catalog into separate user transactions. The transaction data is incorporated into subject analyses that use supercomputing resources to generate predictive network analyses and visualizations of subject areas searched by library users. The paper develops several methods for ranking these subject headings, and shows how the analyses will be extended on supercomputing resources for information retrieval research.","PeriodicalId":6364,"journal":{"name":"2012 IEEE 8th International Conference on E-Science","volume":"106 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 8th International Conference on E-Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eScience.2012.6404447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper demonstrates a series of analyses to calculate new clusters of shared subject headings among items in a library collection. The paper establishes a method of reconstituting anonymous circulation data from a library catalog into separate user transactions. The transaction data is incorporated into subject analyses that use supercomputing resources to generate predictive network analyses and visualizations of subject areas searched by library users. The paper develops several methods for ranking these subject headings, and shows how the analyses will be extended on supercomputing resources for information retrieval research.
将流通数据纳入图书馆馆藏搜索算法的相关性排名中
本文演示了一系列的分析,以计算图书馆馆藏中项目之间的共享主题标题的新簇。本文建立了一种将图书馆目录中的匿名流通数据重组为单独用户交易的方法。事务数据被合并到主题分析中,使用超级计算资源生成预测网络分析和图书馆用户搜索主题区域的可视化。本文提出了对这些主题进行排序的几种方法,并展示了如何将这些分析扩展到信息检索研究的超级计算资源上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信