Kwon Choi, ChangUk Koo, JeongHun Oh, Jong In Park, H. Hirata, S. Ye
{"title":"Development of Electron Paramagnetic Resonance Magnet System for In Vivo Tooth Dosimetry","authors":"Kwon Choi, ChangUk Koo, JeongHun Oh, Jong In Park, H. Hirata, S. Ye","doi":"10.1155/2022/7332324","DOIUrl":null,"url":null,"abstract":"As part of a homebuilt continuous wave electron paramagnetic resonance (EPR) spectrometer operating at 1.2 GHz, a magnet system for in vivo tooth dosimetry was developed. The magnet was designed by adopting NdFeB permanent magnet (PM) for the main magnetic field generation. For each pole of the magnet, 32 cylindrical PMs were arranged in 2 axially aligned ring arrays. The pole gap was 18 cm, which was wide enough for a human head breadth. The measured magnetic field was compared with the magnetic field distribution calculated in a finite element method (FEM) simulation. EPR spectra of intact human teeth irradiated 5 and 30 Gy were measured for the performance test with the developed magnet system and spectrometer. The measured mean magnetic flux density was estimated to be 44.45 mT with homogeneity of 1,600 ppm in a 2 cm diameter of the spherical volume of the XY plane, which was comparable to the FEM simulation results. The sweep coefficient of the magnetic field sweep coil was 0.35 mT per Ampere in both the measurement and FEM simulation. With ±9 A current, the sweep range was 5.7 mT, which was sufficiently wide to measure the tooth radiation-induced signal (RIS) and reference material. The peak-to-peak amplitude of the measured modulation field was 0.38 mT at the center of the magnet. With the developed magnet fully integrated into an EPR system, the EPR spectra of 5 and 30 Gy irradiated teeth were successfully acquired. The developed magnet system showed sufficiently acceptable performance in terms of magnetic flux density and homogeneity. The EPR spectrum of tooth RIS could be measured ex vivo. The RIS of 5 and 30 Gy irradiated teeth was clearly distinguishable from intact human teeth.","PeriodicalId":50623,"journal":{"name":"Concepts in Magnetic Resonance Part B-Magnetic Resonance Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concepts in Magnetic Resonance Part B-Magnetic Resonance Engineering","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2022/7332324","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 2
Abstract
As part of a homebuilt continuous wave electron paramagnetic resonance (EPR) spectrometer operating at 1.2 GHz, a magnet system for in vivo tooth dosimetry was developed. The magnet was designed by adopting NdFeB permanent magnet (PM) for the main magnetic field generation. For each pole of the magnet, 32 cylindrical PMs were arranged in 2 axially aligned ring arrays. The pole gap was 18 cm, which was wide enough for a human head breadth. The measured magnetic field was compared with the magnetic field distribution calculated in a finite element method (FEM) simulation. EPR spectra of intact human teeth irradiated 5 and 30 Gy were measured for the performance test with the developed magnet system and spectrometer. The measured mean magnetic flux density was estimated to be 44.45 mT with homogeneity of 1,600 ppm in a 2 cm diameter of the spherical volume of the XY plane, which was comparable to the FEM simulation results. The sweep coefficient of the magnetic field sweep coil was 0.35 mT per Ampere in both the measurement and FEM simulation. With ±9 A current, the sweep range was 5.7 mT, which was sufficiently wide to measure the tooth radiation-induced signal (RIS) and reference material. The peak-to-peak amplitude of the measured modulation field was 0.38 mT at the center of the magnet. With the developed magnet fully integrated into an EPR system, the EPR spectra of 5 and 30 Gy irradiated teeth were successfully acquired. The developed magnet system showed sufficiently acceptable performance in terms of magnetic flux density and homogeneity. The EPR spectrum of tooth RIS could be measured ex vivo. The RIS of 5 and 30 Gy irradiated teeth was clearly distinguishable from intact human teeth.
期刊介绍:
Concepts in Magnetic Resonance Part B brings together engineers and physicists involved in the design and development of hardware and software employed in magnetic resonance techniques. The journal welcomes contributions predominantly from the fields of magnetic resonance imaging (MRI), nuclear magnetic resonance (NMR), and electron paramagnetic resonance (EPR), but also encourages submissions relating to less common magnetic resonance imaging and analytical methods.
Contributors come from both academia and industry, to report the latest advancements in the development of instrumentation and computer programming to underpin medical, non-medical, and analytical magnetic resonance techniques.