On-line signature recognition via fusion of dynamic features into dissimilarity space

Ilias Theodorakopoulos, G. Economou, S. Fotopoulos, A. Ifantis
{"title":"On-line signature recognition via fusion of dynamic features into dissimilarity space","authors":"Ilias Theodorakopoulos, G. Economou, S. Fotopoulos, A. Ifantis","doi":"10.1109/ISSPIT.2013.6781921","DOIUrl":null,"url":null,"abstract":"In this paper a method for on-line signature recognition that combines dynamic features, fused into dissimilarity space, with a powerful collaborative sparse representation-based classification scheme is proposed. Dissimilarity vectors are formed in two stages. Initially, a number of informative dynamic features are extracted and stored in sequences. Afterwards, pairwise dissimilarities among feature sequences, computed using the DTW algorithm, are used to construct the new representation. Based on collaborative sparse representation principles, a new embedding space is defined where classification can be implemented efficiently. According to this scheme, signatures are represented in terms of their position inside the data structure, resulting in high-level performance without utilizing optimal feature selection procedures. The proposed framework has been evaluated using the SUSIG and the SVC2004 on-line signature databases.","PeriodicalId":88960,"journal":{"name":"Proceedings of the ... IEEE International Symposium on Signal Processing and Information Technology. IEEE International Symposium on Signal Processing and Information Technology","volume":"50 1","pages":"000440-000445"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IEEE International Symposium on Signal Processing and Information Technology. IEEE International Symposium on Signal Processing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2013.6781921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper a method for on-line signature recognition that combines dynamic features, fused into dissimilarity space, with a powerful collaborative sparse representation-based classification scheme is proposed. Dissimilarity vectors are formed in two stages. Initially, a number of informative dynamic features are extracted and stored in sequences. Afterwards, pairwise dissimilarities among feature sequences, computed using the DTW algorithm, are used to construct the new representation. Based on collaborative sparse representation principles, a new embedding space is defined where classification can be implemented efficiently. According to this scheme, signatures are represented in terms of their position inside the data structure, resulting in high-level performance without utilizing optimal feature selection procedures. The proposed framework has been evaluated using the SUSIG and the SVC2004 on-line signature databases.
在线签名识别通过将动态特征融合到不同空间
本文提出了一种将动态特征融合到不相似空间的在线签名识别方法与基于协作稀疏表示的强大分类方案相结合的在线签名识别方法。不同向量的形成分两个阶段。首先,提取大量信息动态特征并存储在序列中。然后,使用DTW算法计算特征序列之间的两两不相似度,用于构建新的表示。基于协同稀疏表示原则,定义了一个新的嵌入空间,在该嵌入空间中可以有效地实现分类。根据该方案,签名根据其在数据结构中的位置表示,从而在不使用最优特征选择过程的情况下获得高水平的性能。使用SUSIG和SVC2004在线特征数据库对提议的框架进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信