Reliability of QRPA approach to ββ and β decays

J. Terasaki, Y. Iwata
{"title":"Reliability of QRPA approach to ββ and β decays","authors":"J. Terasaki, Y. Iwata","doi":"10.1063/1.5130988","DOIUrl":null,"url":null,"abstract":"We investigate the reliability of the quasiparticle random-phase approximation (QRPA) in application to the nuclear matrix element (NME) of the double-β decay of 136Xe. We examine the dependence of the NME of the two-neutrino double-β (2νββ) decay on the choice of the set of the intermediate-state energies, spectrum of the intermediate nucleus, the Gamow-Teller (GT) strength distribution, the GT strengths of the β decays of a nearby nucleus, and a higher-order term of the 2νββ NME recently proposed. The QRPA approach is a good approximation to the decay instance of 136Xe → 136Ba.We investigate the reliability of the quasiparticle random-phase approximation (QRPA) in application to the nuclear matrix element (NME) of the double-β decay of 136Xe. We examine the dependence of the NME of the two-neutrino double-β (2νββ) decay on the choice of the set of the intermediate-state energies, spectrum of the intermediate nucleus, the Gamow-Teller (GT) strength distribution, the GT strengths of the β decays of a nearby nucleus, and a higher-order term of the 2νββ NME recently proposed. The QRPA approach is a good approximation to the decay instance of 136Xe → 136Ba.","PeriodicalId":23715,"journal":{"name":"WORKSHOP ON CALCULATION OF DOUBLE-BETA-DECAY MATRIX ELEMENTS (MEDEX’19)","volume":"82 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WORKSHOP ON CALCULATION OF DOUBLE-BETA-DECAY MATRIX ELEMENTS (MEDEX’19)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5130988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the reliability of the quasiparticle random-phase approximation (QRPA) in application to the nuclear matrix element (NME) of the double-β decay of 136Xe. We examine the dependence of the NME of the two-neutrino double-β (2νββ) decay on the choice of the set of the intermediate-state energies, spectrum of the intermediate nucleus, the Gamow-Teller (GT) strength distribution, the GT strengths of the β decays of a nearby nucleus, and a higher-order term of the 2νββ NME recently proposed. The QRPA approach is a good approximation to the decay instance of 136Xe → 136Ba.We investigate the reliability of the quasiparticle random-phase approximation (QRPA) in application to the nuclear matrix element (NME) of the double-β decay of 136Xe. We examine the dependence of the NME of the two-neutrino double-β (2νββ) decay on the choice of the set of the intermediate-state energies, spectrum of the intermediate nucleus, the Gamow-Teller (GT) strength distribution, the GT strengths of the β decays of a nearby nucleus, and a higher-order term of the 2νββ NME recently proposed. The QRPA approach is a good approximation to the decay instance of 136Xe → 136Ba.
QRPA方法对ββ和β衰变的可靠性
我们研究了准粒子随机相位近似(QRPA)在136Xe双β衰变核矩阵元(NME)中的可靠性。我们研究了双中微子双-β (2νββ)衰变的NME与中间态能量集的选择、中间核的谱、Gamow-Teller (GT)强度分布、附近核的β衰变的GT强度以及最近提出的2νββ NME的高阶项的关系。QRPA方法是136Xe→136Ba衰变实例的一个很好的近似。我们研究了准粒子随机相位近似(QRPA)在136Xe双β衰变核矩阵元(NME)中的可靠性。我们研究了双中微子双-β (2νββ)衰变的NME与中间态能量集的选择、中间核的谱、Gamow-Teller (GT)强度分布、附近核的β衰变的GT强度以及最近提出的2νββ NME的高阶项的关系。QRPA方法是136Xe→136Ba衰变实例的一个很好的近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信