An SDN controller-based framework for anomaly detection using a GAN ensemble algorithm

Pub Date : 2023-01-01 DOI:10.36244/icj.2023.2.5
Dubem Ezeh, Jaudelice de Oliveira
{"title":"An SDN controller-based framework for anomaly detection using a GAN ensemble algorithm","authors":"Dubem Ezeh, Jaudelice de Oliveira","doi":"10.36244/icj.2023.2.5","DOIUrl":null,"url":null,"abstract":"Of recent, a handful of machine learning techniques have been proposed to handle the task of intrusion detection with algorithms taking charge; these algorithms learn, from traffic flow examples, to distinguish between benign and anomalous network events. In this paper, we explore the use of a Generative Adversarial Network (GAN) ensemble to detect anomalies in a Software-Defined Networking (SDN) environment using the Global Environment for Network Innovations (GENI) testbed over geographically separated instances. A controllerbased framework is proposed, comprising several components across the detection chain. A bespoke dataset is generated, addressing three of the most popular contemporary network attacks and using an SDN perspective. Evaluation results show great potential for detecting a wide array of anomalies.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36244/icj.2023.2.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Of recent, a handful of machine learning techniques have been proposed to handle the task of intrusion detection with algorithms taking charge; these algorithms learn, from traffic flow examples, to distinguish between benign and anomalous network events. In this paper, we explore the use of a Generative Adversarial Network (GAN) ensemble to detect anomalies in a Software-Defined Networking (SDN) environment using the Global Environment for Network Innovations (GENI) testbed over geographically separated instances. A controllerbased framework is proposed, comprising several components across the detection chain. A bespoke dataset is generated, addressing three of the most popular contemporary network attacks and using an SDN perspective. Evaluation results show great potential for detecting a wide array of anomalies.
分享
查看原文
基于SDN控制器的基于GAN集成算法的异常检测框架
最近,人们提出了一些机器学习技术,通过算法来处理入侵检测的任务;这些算法学习,从交通流的例子,以区分良性和异常的网络事件。在本文中,我们探索了使用生成对抗网络(GAN)集成来检测软件定义网络(SDN)环境中的异常,使用全球网络创新环境(GENI)测试平台在地理上分离的实例上。提出了一个基于控制器的框架,该框架由跨检测链的多个组件组成。生成一个定制的数据集,处理当代最流行的三种网络攻击,并使用SDN的视角。评价结果表明,该方法具有探测各种异常的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信