Improving gene expression programming performance by using differential evolution

Qiongyun Zhang, Chi Zhou, Weimin Xiao, Peter C. Nelson
{"title":"Improving gene expression programming performance by using differential evolution","authors":"Qiongyun Zhang, Chi Zhou, Weimin Xiao, Peter C. Nelson","doi":"10.1109/ICMLA.2007.55","DOIUrl":null,"url":null,"abstract":"Gene Expression Programming (GEP) is an evolutionary algorithm that incorporates both the idea of a simple, linear chromosome of fixed length used in Genetic Algorithms (GAs) and the tree structure of different sizes and shapes used in Genetic Programming (GP). As with other GP algorithms, GEP has difficulty finding appropriate numeric constants for terminal nodes in the expression trees. In this work, we describe a new approach of constant generation using Differential Evolution (DE), a real-valued GA robust and efficient at parameter optimization. Our experimental results on two symbolic regression problems show that the approach significantly improves the performance of the GEP algorithm. The proposed approach can be easily extended to other Genetic Programming variations.","PeriodicalId":74528,"journal":{"name":"Proceedings of the ... International Conference on Machine Learning and Applications. International Conference on Machine Learning and Applications","volume":"28 1","pages":"31-37"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... International Conference on Machine Learning and Applications. International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2007.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Gene Expression Programming (GEP) is an evolutionary algorithm that incorporates both the idea of a simple, linear chromosome of fixed length used in Genetic Algorithms (GAs) and the tree structure of different sizes and shapes used in Genetic Programming (GP). As with other GP algorithms, GEP has difficulty finding appropriate numeric constants for terminal nodes in the expression trees. In this work, we describe a new approach of constant generation using Differential Evolution (DE), a real-valued GA robust and efficient at parameter optimization. Our experimental results on two symbolic regression problems show that the approach significantly improves the performance of the GEP algorithm. The proposed approach can be easily extended to other Genetic Programming variations.
利用差分进化改进基因表达编程性能
基因表达编程(GEP)是一种进化算法,它结合了遗传算法(GAs)中使用的固定长度的简单线性染色体的思想和遗传规划(GP)中使用的不同大小和形状的树结构。与其他GP算法一样,GEP很难为表达式树中的终端节点找到合适的数字常量。在这项工作中,我们描述了一种新的使用微分进化(DE)的常数生成方法,微分进化是一种在参数优化方面鲁棒且高效的实值遗传算法。我们在两个符号回归问题上的实验结果表明,该方法显著提高了GEP算法的性能。所提出的方法可以很容易地扩展到其他遗传规划变体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信