Development of Low-TDD GaAsyP1-y/GaP/Si Metamorphic Materials for High-Efficiency III-V/Si Photovoltaics

J. Boyer, Ari N. Blumer, Zak H. Blumer, Francisco A. Rodriguez, Daniel L. Lepkowski, S. Ringel, T. Grassman
{"title":"Development of Low-TDD GaAsyP1-y/GaP/Si Metamorphic Materials for High-Efficiency III-V/Si Photovoltaics","authors":"J. Boyer, Ari N. Blumer, Zak H. Blumer, Francisco A. Rodriguez, Daniel L. Lepkowski, S. Ringel, T. Grassman","doi":"10.1109/PVSC45281.2020.9300803","DOIUrl":null,"url":null,"abstract":"Metamorphic III-V/Si materials with low threading dislocation density (TDD) are critical to realizing high-efficiency III-V/Si multijunction photovoltaics. In pursuit of a dual junction III-V/Si design with a GaAs0.75P0.25 top junction epitaxially integrated on a Si bottom junction, we report on progress made in the development of GaP/Si and GaAsyPl-y/Si materials with significantly reduced TDD. Using a tightly integrated study of fundamental dislocation dynamics, rapid electron microscopy based feedback on dislocation populations, and MOCVD process development, we have fully re-engineered the GaP on Si growth process. Our new approach results in a TDD of 7x104 cm−2 for 50 nm thick films. Implementation of a novel dislocation glide enhancing heterostructure then enabled subsequent growth of fully-relaxed, 500 nm total thickness n-GaP with a TDD of 2.4×106 cm−2. When applied to the production of full GaAs0.75P0.25/Si tandem solar cell structures, but without any significant optimization thus far, this low TDD is effectively maintained, yielding a terminal TDD of only 3.0x106 cm−2, sufficient to support high photovoltaic performance.","PeriodicalId":6773,"journal":{"name":"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)","volume":"37 1","pages":"1680-1682"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC45281.2020.9300803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Metamorphic III-V/Si materials with low threading dislocation density (TDD) are critical to realizing high-efficiency III-V/Si multijunction photovoltaics. In pursuit of a dual junction III-V/Si design with a GaAs0.75P0.25 top junction epitaxially integrated on a Si bottom junction, we report on progress made in the development of GaP/Si and GaAsyPl-y/Si materials with significantly reduced TDD. Using a tightly integrated study of fundamental dislocation dynamics, rapid electron microscopy based feedback on dislocation populations, and MOCVD process development, we have fully re-engineered the GaP on Si growth process. Our new approach results in a TDD of 7x104 cm−2 for 50 nm thick films. Implementation of a novel dislocation glide enhancing heterostructure then enabled subsequent growth of fully-relaxed, 500 nm total thickness n-GaP with a TDD of 2.4×106 cm−2. When applied to the production of full GaAs0.75P0.25/Si tandem solar cell structures, but without any significant optimization thus far, this low TDD is effectively maintained, yielding a terminal TDD of only 3.0x106 cm−2, sufficient to support high photovoltaic performance.
高效III-V/Si光伏用低tdd GaAsyP1-y/GaP/Si变质材料的研制
具有低螺纹位错密度(TDD)的变质III-V/Si材料是实现高效III-V/Si多结光伏发电的关键。在追求双结III-V/Si设计中,GaAs0.75P0.25顶部结外延集成在Si底部结上,我们报告了显著降低TDD的GaP/Si和GaAsyPl-y/Si材料的开发进展。通过对基本位错动力学、基于位错种群反馈的快速电子显微镜和MOCVD工艺发展的紧密集成研究,我们完全重新设计了Si生长过程中的GaP。我们的新方法导致50nm厚薄膜的TDD为7x104 cm−2。实现了一种新的位错滑动增强异质结构,随后生长出了完全松弛的总厚度为500 nm的n-GaP, TDD为2.4×106 cm−2。当应用于生产全GaAs0.75P0.25/Si串联太阳能电池结构时,但迄今为止没有任何显著的优化,这种低TDD被有效地保持,产生的终端TDD仅为3.0 × 106 cm−2,足以支持高光伏性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信