Serkan Kükrer, İ. Tunç, A. E. Erginal, Ozender Bay, Ş. Kılıç
{"title":"Distribution, sources and ecological risk assessment of metals in Kura river sediments along a human disturbance gradient","authors":"Serkan Kükrer, İ. Tunç, A. E. Erginal, Ozender Bay, Ş. Kılıç","doi":"10.1080/15275922.2021.1940378","DOIUrl":null,"url":null,"abstract":"Abstract Monitoring the pollution status of freshwater resources is an important step in sustainable planning. This study aimed to determine the distribution and sources of metals in the sediments of the transboundary eastern Anatolian/Caucasus region Kura river as well as its ecological risk level. Surface sediment samples were collected from eight sites along the human disturbance gradient. Multi-element analyses of the collected samples were performed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Chlorophyll degradation product (CDP) analysis was performed spectrophotometrically. OC analysis was carried out using the titration method. The data obtained were evaluated using the indices of enrichment factor, geo-accumulation, modified hazard quotient and ecological contamination index and potential ecological risk. The average content of metals in the sediment at the eight sites was of the following descending order from highest to lowest: Al > Mn > Zn > V> Ni > Cr > Cu > Co > Pb > As > Cd > Tl > Hg. According to the distribution of raw metal values, urbanization is not the only factor controlling metal distribution. Adsorption processes and organic material content also emerge as an important factor. Enrichment factor values were of the following order: T1 > Pb > Mn > Hg > Cr > Co > Cd > Ni > As > Zn > Al > Cu > V. Results revealed that the sources of Cu, V and Al were lithogenic, in contrast to Tl, Pb, Mn, Hg, Cr, Co, Cd, Ni, and As, thus pointing to human-induced accumulation. According to the potential ecological risk index, these elements have the potential to create medium-to-high level ecological risks and were substantially of atmospheric origin. The ecological contamination index is also consistent with these findings in terms of risk level. A municipal waste stream, fossil fuel burning and a cement plant operating in close proximity also appeared to be the possible sources.","PeriodicalId":11895,"journal":{"name":"Environmental Forensics","volume":"1 1","pages":"491 - 501"},"PeriodicalIF":1.5000,"publicationDate":"2021-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Forensics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15275922.2021.1940378","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 6
Abstract
Abstract Monitoring the pollution status of freshwater resources is an important step in sustainable planning. This study aimed to determine the distribution and sources of metals in the sediments of the transboundary eastern Anatolian/Caucasus region Kura river as well as its ecological risk level. Surface sediment samples were collected from eight sites along the human disturbance gradient. Multi-element analyses of the collected samples were performed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Chlorophyll degradation product (CDP) analysis was performed spectrophotometrically. OC analysis was carried out using the titration method. The data obtained were evaluated using the indices of enrichment factor, geo-accumulation, modified hazard quotient and ecological contamination index and potential ecological risk. The average content of metals in the sediment at the eight sites was of the following descending order from highest to lowest: Al > Mn > Zn > V> Ni > Cr > Cu > Co > Pb > As > Cd > Tl > Hg. According to the distribution of raw metal values, urbanization is not the only factor controlling metal distribution. Adsorption processes and organic material content also emerge as an important factor. Enrichment factor values were of the following order: T1 > Pb > Mn > Hg > Cr > Co > Cd > Ni > As > Zn > Al > Cu > V. Results revealed that the sources of Cu, V and Al were lithogenic, in contrast to Tl, Pb, Mn, Hg, Cr, Co, Cd, Ni, and As, thus pointing to human-induced accumulation. According to the potential ecological risk index, these elements have the potential to create medium-to-high level ecological risks and were substantially of atmospheric origin. The ecological contamination index is also consistent with these findings in terms of risk level. A municipal waste stream, fossil fuel burning and a cement plant operating in close proximity also appeared to be the possible sources.
期刊介绍:
Environmental Forensics provides a forum for scientific investigations that address environment contamination, its sources, and the historical reconstruction of its release into the environment. The context for investigations that form the published papers in the journal are often subjects to regulatory or legal proceedings, public scrutiny, and debate. In all contexts, rigorous scientific underpinnings guide the subject investigations.
Specifically, the journal is an international, quarterly, peer-reviewed publication offering scientific studies that explore or are relevant to the source, age, fate, transport, as well as human health and ecological effects of environmental contamination. Journal subject matter encompasses all aspects of contamination mentioned above within the environmental media of air, water, soil, sediments and biota. Data evaluation and analysis approaches are highlighted as well including multivariate statistical methods. Journal focus is on scientific and technical information, data, and critical analysis in the following areas:
-Contaminant Fingerprinting for source identification and/or age-dating, including (but not limited to) chemical, isotopic, chiral, mineralogical/microscopy techniques, DNA and tree-ring fingerprinting
-Specific Evaluative Techniques for source identification and/or age-dating including (but not limited to) historical document and aerial photography review, signature chemicals, atmospheric tracers and markets forensics, background concentration evaluations.
-Statistical Evaluation, Contaminant Modeling and Data Visualization
-Vapor Intrusion including delineating the source and background values of indoor air contamination
-Integrated Case Studies, employing environmental fate techniques
-Legal Considerations, including strategic considerations for environmental fate in litigation and arbitration, and regulatory statutes and actions